
A dynamic load balancing method for the evaluation of
chemical reaction rates in parallel combustion

simulations

J. Muela, R. Borrell1, J. Ventosa-Molina2, L. Jofre3, O. Lehmkuhl1, C.D.
Pérez-Segarra∗

Heat and Mass Technological Center (CTTC),Universitat Politècnica de Catalunya -
BarcelonaTech (UPC), ESEIAAT, Colom 11, 08222, Terrassa, Barcelona, Spain

Abstract

The development and assessment of an efficient parallelization method for

the evaluation of reaction rates in combustion simulations is presented. Combus-

tion simulations where the finite-rate chemistry model is employed are compu-

tationally expensive. In such simulations, a transport equation for each species

in the chemical reaction mechanism has to be solved, and the resulting system

of equations is typically stiff. As a result, advanced implicit methods must be

applied to obtain accurate solutions using reasonable time-steps at expenses

of higher computational resources than explicit or classical implicit methods.

In the present work, a new algorithm aimed to enhance the numerical perfor-

mance of the time integration of stiff systems of equations in parallel combustion

simulations is presented. The algorithm is based on a runtime load balancing

mechanism, increasing noteworthy the computational performance of the simu-

lations, and consequently, reducing significantly the computer time required to

perform the numerical combustion studies.

∗Corresponding author
Email address: cttc@cttc.upc.edu (C.D. Pérez-Segarra)

1Present address: Barcelona Supercomputing Center (BSC-CNS) , C/ Jordi Girona 31,
Nexus II Building, Barcelona, Spain

2Present address: Chair of Fluid Mechanics, Technische Universität Dresden, Zeunerbau,
George-Bähr-Straße 3, 01069 Dresden

3Present address: Center for Turbulence Research, Stanford University, Stanford, CA
94305, USA

Preprint submitted to Elsevier April 29, 2019

Keywords: Combustion, Parallel, Load balancing, Chemical kinetics

1. Introduction

Combustion processes are encountered in a wide spectrum of scientific and

engineering applications, ranging from energy conversion and propulsion sys-

tems to fires, volcanoes and solar physics. Therefore, the study of combustion

processes to better understand its physics and optimize combustion applica-

tions is a very relevant and active field of research. The study of combustion

processes employing Computational Fluid Dynamics (CFD) simulations has re-

ceived a wide attention from researchers and engineers over the last decades

[1, 2, 3].

In general, combustion simulations are characterized by a wide range of cou-

pled phenomena [4], which makes these simulations complex and challenging.

One of these issues is the description of the chemical reactions. The kinetics

of combustion chemical reactions are complex processes described by the em-

pirical Arrhenius law [5]. Combustion processes may involve hundreds or even

thousands of species and reactions, and the integration of the resulting chem-

istry system of ordinary differential equations (ODEs) requires a huge amount

of computational resources, even for zero-dimensional reactors [6]. Moreover,

this set of ODEs is stiff [7]. A stiff equation is characterized for having a smooth

solution with a slow variation, whose numerical integration presents instabili-

ties due to the presence of nearby solutions with very fast variations. This

characteristic makes these type of equations difficult to integrate numerically.

Moreover, this also makes the numerical integration computationally expensive,

since very small time-integration steps must be employed in order to avoid oscil-

latory or diverging solutions. Therefore, non-classical integration methods able

to overcome this constraint must be used in order to integrate stiff equations

using reasonable integration steps, aiming to obtain accurate solutions in an

affordable computing time. Some of these methods are the Rosenbrock method,

the Semi-Implicit Extrapolation Method or the Gear’s-like methods [8].

2

Nomenclature

g Gravity

h Total enthalpy

hs Sensible enthalpy

hcit Heavy calculation iterations

hcss Heavy calculation system

size

hncpu Heavy nodes per CPU

hnt Total number of heavy nodes

mshn Message size communicated

by a heavy node

ncpu Nodes per CPU

nt Total number of nodes

N Number of CPUs

Nhn CPUs with heavy nodes

Ns Number of species

p Dynamic pressure

P0 Thermodynamic pressure

Q̇ Energy source term

q̇ Conduction heat flux

Sr Speed-up ratio

t Time

u Velocity

Vk Species k diffusion velocity

ẇk Species k mass reaction rate

Yk Species k mass fraction

∆t Simulation time step

∆tchem Chemical time step

∆h0
f,k Species k standard formation

enthalpy

ρ Density

τ Viscous stress tensor

τc Chemical time-scale

τt Turbulent subgrid time-scale

θhn Ratio heavy nodes per CPU

θN Ratio CPUs with heavy

nodes

Θ Ratio of imbalance

ζ Ratio computing vs. com-

munication effort

Prt Turbulent Prandtl number

Re Reynolds number

Sct Turbulent Schmidt number

·̃ Filtered quantity

· Favre-averaged quantity

3

Nonetheless, these numerical time-integration methods can lead to unbal-

anced executions when running parallel combustion simulations, since only some

computational cells of the simulation domain will present active chemical reac-

tions. For example, Velghe et al. [9] reported load balancing problems on 6-

cylinder gasoline engine simulation when using more than 128 processors. These

problems arise since combustion phenomena are localized and the employed

combustion models are only active at some regions of the computational mesh.

Another example of load balancing issues is the one reported by Torres et al.

[10] in their study about different partitioning strategies for combustion engine

simulations employing the Kiva-4 code [11]. In their simulations, computational

cells become deactivated and activated during simulation time, originating load

balancing problems depending on the initial mesh partitioning, even without

considering the possible imbalance generated by chemical reactions.

Therefore, aiming to increase the efficiency and reduce the computing time

of parallel combustion simulations, it is of interest the development of numer-

ical methods and parallelization strategies capable to dynamically balance the

load of these simulations. With this aim, Thévenin et al. [12] proposed a load

balancing strategy based on the transfer of the boundary cells between neigh-

bouring processors. Another load balancing strategy is the one proposed by Shi

et al. [13]. In their work, a hybrid CPU/GPU algorithm is presented, where

the highly stiff nodes are integrated implicitly by the CPUs, while the mod-

erately stiff and non-stiff nodes are integrated explicitly using GPUs. Hence,

they propose a load balancing algorithm that tries to achieve similar computing

time between the CPUs and the GPUs at each time-step. In the present work,

a novel dynamic load balancing method for parallel combustion simulations is

developed and assessed. The algorithm presented is capable of redistributing

the unbalanced computational tasks of a parallel computation between all the

CPUs involved in the calculation. It is based on a runtime load balancing

mechanism which is complementary to the underlying domain decomposition

(DD). This load balancing algorithm has been developed using the Message

Passing Interface (MPI) standard [14] and in C++ Object Oriented Program-

4

ming (OOP) language [15], assuring a high-portability on High Performance

Computing (HPC) platforms.

The paper is organized as follows. First, in Section 2 the mathematical

description of combustion processes is detailed. Section 3 presents the time-

integration strategy proposed to integrate the species mass fraction transport

equation. The strategy is based on a hybrid explicit/implicit method where

the non-stiff cells are integrated explicitly, while the stiff cells are integrated

implicitly using a non-classical integration method specially well-suited for stiff

equations. The one used in the present work has been the Gear’s method [16].

This strategy allows to reduce the computational effort of the simulation, al-

though it creates a load imbalance in parallel simulations. Hence, a dynamic

load balancing method capable of efficiently redistribute and rebalance the un-

balanced parallel simulations has been proposed. This algorithm developed and

implemented within this work is described in Section 4. Next, in Section 5, a

performance analysis is presented. Next, in Section 6, the load balancing algo-

rithm has been used to simulate the Cambridge autoignition experiment carried

out by Markides and Mastorakos [17]. This benchmark case has been employed

to test the speed-up and scalability of the developed method in a real combus-

tion parallel simulation. Finally, conclusions and future work are discussed in

Section 7.

2. Mathematical formulation

Combustion processes are globally exothermic chemical reactions which take

place in a fluid flow. Furthermore, combustion simulations require solving the

dynamics of the flow where combustion occurs as well as the kinetics of the chem-

ical process. In finite-rate combustion simulations, the Navier-Stokes equations

together with the energy conservation equation and a mass fraction transport

equation per each species have to be solved. The present study is carried out

in the framework of Large-Eddy Simulation (LES) modelling. In LES the large

scales of the flow are solved, while the subgrid-scales (SGS) are modelled. This

5

scale separation is obtained applying a low-pass filter to the transport equa-

tions. Moreover, in non-constant density cases the filtered variables are density-

weighted in order to avoid introducing a model for the unclosed term in the

continuity equation, as proposed by Favre [18]. Hence, the resulting density

weighted filtered governing equations are:

∂ρ

∂t
+∇ · (ρũ) = 0, (1)

∂ρũ

∂t
+∇ · (ρũũ) = −∇p+∇ · (τ − ρ (ũu− ũũ)) + ρg, (2)

ρ
∂h̃

∂t
+ ρũ · ∇h̃ =

dP0

dt
−∇ ·

(
q̇ + ρ

(
ũh− ũh̃

))
+ τ : ∇u + Q̇, (3)

ρ
∂Ỹk
∂t

+ ρũ · ∇Ỹk = −∇ ·
(
ρVkYk + ρ

(
ũYk − ũỸk

))
+ ẇk, (4)

where t represents time, ρ is the density of the mixture, u is the velocity vector,

p stands for the dynamic pressure, g the gravity and τ is the viscous stress

tensor. In the energy conservation equation (Eq. (3)) q̇ is the conduction heat

flux evaluated using the Fourier’s law and Q̇ is a heat source term, including

radiation. The energy equation is solved for the total enthalpy h, which includes

both sensible and chemical (formation) enthalpy. Additionally, P0 denotes the

thermodynamic pressure, which is spatially constant. In Eq. (4) Yk is the mass

fraction of species k, Vk the diffusion velocity and ẇk the mass reaction rate

per unit volume of the species k. The term ρ (ũu− ũũ) in Eq. (2) corresponds

to the SGS stress tensor. In the present work this term is closed using an eddy-

viscosity-type model following the Boussinesq hypothesis [19]. Regarding the

unclosed terms of the energy (Eq. (3)) and species (Eq. (4)) transport equations,

these are modelled employing a gradient assumption [5].

The governing equations for the transported scalars are solved in non-conservative

form due to the employed time-integration strategy, based on a predictor-corrector

scheme for low-Mach number flows further detailed in the work of Ventosa et

6

al. [20]. At each step of the predictor-corrector scheme, first the transported

scalars are integrated in non-conservative form in order to compute the density

at the new time step, which is afterwards employed in the integration of the

momentum equation.

The mass reaction rate per unit volume of species k, ẇk, is the term respon-

sible for possible stiffness when integrating Eq. (4). It is calculated as the sum

of the rates ẇk,j for all M reactions present in a chemical reaction mechanism,

i.e.:

ẇk =

M∑
j=1

ẇk,j . (5)

The calculation of these rates relies on the empirical Arrehnius law [5]. The

values of the terms appearing in the Arrhenius expression are obtained from

chemical schemes that are experimentally generated. Deciding which species or

how many reactions should be taken into account to properly describe a chemical

reaction is not a solved problem. Many different chemical mechanisms can be

found in the literature. There exist very detailed mechanisms like the GRI-

Mech 3.0 [21], designed to model natural gas combustion, including 53 species

and 325 reactions. There are also single-step mechanisms, like the one defined

by Lange et al. for methane/air flames [22]. In between, there are the reduced

mechanisms, like the chemical scheme derived by Mueller et al. for hydrogen

[23], which includes 9 species and 21 reactions. Obviously, as more species and

reactions are included in the mechanism, more detailed results are obtained,

although the calculation costs increase exponentially. Combustion simulations

can be very sensitive to the chemical mechanism employed. Therefore, special

care should be taken when selecting it, trying to find the best compromise

between accuracy and computational cost.

3. Numerical time integration of finite-rate combustion equations

The set of equations that must be solved in order to calculate the mass

reaction rate ẇk in Eq. (4) are characterized by the presence of a wide range

7

of time-scales in their variables, which may cause that this term becomes stiff.

Therefore, this source term is the one requiring a special temporal integration

strategy. In the explanation of the numerical time-integration strategy detailed

below, Eq. (4) is expressed in its unfiltered form, in order to not haul in all

the equations the filtered and density-weighted variables. The time integration

strategy is the same for both filtered and non-filtered equations, and therefore,

its application to LES cases is straightforward. Hence, Eq. (4) is rearranged

and expressed as:

ρ
∂Yk
∂t

= F(Yk) + ẇk, (6)

where F(Yk) includes the convective and diffusive operators of mass fraction

conservation equation for species k, i.e.:

F(Yk) = −ρu · ∇Yk −∇ · (ρVkYk). (7)

When the term ẇk is non-stiff, both terms on the right-hand side of Eq. (6)

are integrated explicitly. On the other hand, when this mass reaction rate is

stiff, a splitting technique is applied. Then, the term F(Yk) is integrated ex-

plicitly, while the mass reaction rate, ẇk, is integrated implicitly. This implicit

integration is done using an integration technique well-suited for stiff equations.

Among the several types of operator-splitting techniques reported in the liter-

ature [24, 25, 26, 27, 28], the one employed in the present work is based on a

pseudo-time splitting procedure similar to the one employed by Vos [26] and

Consul [29]. The splitting technique used in the present work has been devel-

oped for the predictor-corrector scheme detailed in previous works [20, 30]. In

the predictor step scalars are integrated using a second-order Adams-Bashforth

time integration scheme. On the other hand, scalars are advanced by means

of a Crank-Nicolson time integration scheme in the corrector step. It can be

summarized as:

Predictor step.

8

The mass fraction conservation equations of the N species are fully explicitly

integrated in order to obtain the predicted values Y ∗k :

ρn
Yk
∗ − Ykn

∆t
=

3

2

(
F(Y n

k) + ẇn
k

)
− 1

2

(
F(Y n−1

k) + ẇn−1
k

)
, (8)

where the value F(Y n
k) is stored in memory.

Corrector step.

In the corrector step, a first value Y n+1
k is calculated fully explicitly for all

the nodes of the mesh, according to:

ρ∗
Y n+1
k − Ykn

∆t
=

1

2

(
F(Y ∗k) + ẇ∗k

)
+

1

2

(
F(Y n

k) + ẇn
k

)
. (9)

During this integration loop, it is estimated which nodes present a stiff equa-

tion system and which not. The employed criterion is discussed later. If the

node is considered non-stiff, species mass fraction equations are integrated ex-

plicitly. Then, the mass fraction value at time tn+1 is the one obtained from

Eq. (9). On the other hand, if the node is detected as stiff, the mass reaction

rate ẇk is treated implicitly, then, Eq. (9) is rearranged as:

ρ∗
Y n+1
k − Ykn

∆t
=

1

2

(
F(Y ∗k)

)
+

1

2

(
F(Y n

k)

)
+ ẇn+1

k , (10)

which is split in two parts:

ρ∗
Y p
k − Yk

n

∆t
=

1

2

(
F(Y ∗k)

)
+

1

2

(
F(Y n

k)

)
, (11)

ρ∗
Y n+1
k − Ykp

∆t
= ẇn+1

k , (12)

where Eq. (11) is integrated explicitly, since the values at the right-hand side are

already known, and Eq. (12) is integrated implicitly using an integration method

well-suited for stiff equation systems. The value Y n+1
k obtained in Eq. (9) is

employed as initial seed of the implicit integration method.

9

This pseudo-time splitting technique allows the employment of any integra-

tion method for stiff equations. The one employed in the present work is the

Gear’s method [16], which is the basis of the vast majority of integration meth-

ods developed and used for stiff computations [7]. The Gear’s method is based

on the Backward Differentiation Formulas (BDFs) coupled together with the

Newton’s method [8]. This method requires the evaluation of a Jacobian matrix

and its inverse at each iteration of the Newton’s method. In the present work,

the Jacobian matrix is numerically evaluated employing a forward-difference

approximation. Depending on the system size (i.e., the number of species Ns),

the Jacobian evaluation plus the matrix inversion can be computationally very

expensive. Therefore, although this method allows higher time-steps than ex-

plicit or classical implicit integration methods, its required computational cost

per time-step is higher. Nonetheless, since the allowed time-step is higher, the

method allows a remarkable reduction of the total number of iterations, becom-

ing more suitable.

A key aspect of the method presented is the criterion to decide which control

volumes (CVs) are integrated explicitly and which ones are integrated employing

the implicit strategy by means of the Gear’s method. This criterion can be based

on a mathematical analysis of the equation system, as the methods presented by

Hairer and Wanner [7] for the automatic stiffness detection. Another possibility

is to calculate a time-scale for each system of equations and define as stiff the

equations with a time-scale below a certain value, as done in the work of Shi et

al. [13]. A third option is to define a threshold based on a physical criterion. In

this work, the latter option is preferred, since its computational cost is almost

negligible and the methodology does not depend on the stiff integration method

selected. The idea is to define a chemical time step ∆tchem sufficient to integrate

accurately the mass reaction rates using an explicit time integration method,

in some sense a CFL-like condition for the chemical reactions. This chemical

time step acts as a detector of the regions where the chemical process is most

reactive, and it is defined as:

10

∆tchem = fr
ρ
∣∣∣(h−∑N

k=1 Yk∆h0
f,k

)∣∣∣∣∣∣∑N
k=1 ẇk∆h0

f,k

∣∣∣ . (13)

This criterion is designed trying to limit the increment of energy per unit

mass, avoiding rapid increases of enthalpy and temperature, and aiming to follow

all the scales of the chemical reaction process. The parameter fr is a factor that

in the present work has been set to fr = 5× 10−5. Since this criterion is a key

aspect of the method, further discussion about its derivation and behaviour is

provided in Appendix A.

The integration time step ∆t of the simulation is limited by the requirements

of accuracy and stability for both convective and diffusive terms of the governing

equations integrated explicitly. This time step ∆t can be obtained from the

classical CFL-condition. However, a self-adaptive time strategy based on the

estimation of the eigenvalues of the system of equations is employed in this

work. This method is further detailed in [30]. Hence, in the corrector step

of the algorithm, for each CV the chemical time step ∆tchem is estimated. If

the simulation time step is bigger than it, ∆t > ∆tchem, the mass reaction

rates of the CV are integrated implicitly using the Gear’s method. Otherwise,

if the simulation time step is equal or smaller than the chemical time step,

∆t ≤ ∆tchem, all the terms are integrated explicitly.

This integration strategy allows to notably reduce the total amount of com-

putational requirements of the simulation. Only the CVs with active chemical

reactions are integrated implicitly using Gear’s method. The vast majority of

the computational domain is integrated explicitly, avoiding the significant com-

putational effort demanded by the Gear’s method, since it implies an iterative

process involving evaluations of Jacobians and matrix inversions.

4. Dynamic balancing algorithm

The parallelization of the combustion solver presented in the previous section

is based on a domain decomposition. The mesh that discretizes the simulation

11

Figure 1: Slice showing a flame and the partitions of the computational mesh.

domain is partitioned into different sub-meshes and each of the resulting sub-

domains is solved by a different parallel process. To solve the CVs lying in

the interface between two subdomains, communications are required between

the associated parallel processes. This operation is referred as a halo update.

The mesh partition is based on two criteria: i) minimum number of CVs in the

interface between subdomains; ii) workload balance, i.e. same number of CVs

on each sub-mesh. This partition problem is generally addressed by means of

a graph partitioner applied to the adjacency graph. In this paper the k-way

partitioning algorithm of the METIS software [31] has been used. An example

of mesh partition for a combustor is illustrated in Fig. 1.

Heterogeneity, both in the mesh elements or in the algorithmic approach

used across the simulation domain, complicates the fulfilment of the balancing

requirement. If this heterogeneity is constant along the simulation process, i.e.

neither the mesh elements nor the algorithmic approach used in each part of

the domain changes along the simulation, then the partition can be adapted

12

by using a weighted adjacency graph. However, if there is variability in any

of the aforementioned aspects, a partition that has been generated a priori

may result in an unbalanced workload distribution when the initial conditions

change. This is the situation considered in this paper: the chemically reactive

CVs, which evolve dynamically with the flame shape, are solved with an specific

algorithm with higher computing cost. Therefore, there is a dynamism from the

algorithmic side related with the physics evolution. This problem has been noted

by other authors. For example, Velghe et al. [9] studied different combustion

cases and asserted that the parallel efficiency cannot be addressed using static

mesh partitioning, and should be tackled by means of a dynamic load balancing

strategy.

Different alternatives can be considered to solve this balancing problem.

As aforementioned in Section 1, some authors choose to modify the partition

when the imbalance exceeds a certain threshold, either by calculating a new

one or by moving cells between neighbouring subdomains [12]. This is a valid

option but presents various disadvantages: needs to communicate geometrical

information between processes and can be inefficient if the workload imbalance

rapidly changes at each iteration, since the new a priori balanced partitioning

is based only in information from the previous iterations. Another option is

the one proposed by Shi et al. [13] for hybrid supercomputers. In their work

the CVs are sorted by their stiffness. Then, the most stiff CVs are integrated

implicitly by the CPUs, while the other ones are integrated explicitly on the

GPUs. Their algorithm is designed to achieve a similar computing time between

GPUs and CPUs at each time-step. The estimated computing speed of both

CPUs and GPUs is based on the performance of the previous time-step. This

option accelerates the resolution but it only targets hybrid supercomputers and

inter-node balancing is hardly possible.

In this paper an original strategy based on a work redistribution process

complementary to the underlying DD is presented. The idea is that in the com-

bustion resolution the overloaded processes transfer the data needed to integrate

stiff chemical reactions to the underloaded ones. The latter solve them and send

13

the solution back to the original processes. In this approach the underlying mesh

partition is not modified so other phases of the simulation are not affected. The

same strategy was used by the authors in the context of multi-fluid flow simula-

tions to overcome the imbalance produced on the reconstruction and advection

of two-phase flow interfaces [32, 33].

The load balancing algorithm presented in this work consists on the five

main steps outlined in the next items:

1. Determine workloads: each parallel process evaluates its number of stiff

CVs, and a MPI Alltoall communication is performed to get the workload

distribution in all processes.

2. Define a new balanced distribution: The same sequential algorithm is run

on each parallel process to determine a balanced distribution and to define

the required communication scheme. Further details about this algorithm

are provided in Section 4.1.

3. Workload distribution. All the data required to perform the calculations

is packed and distributed according to the communication scheme defined

in the previous step. This distribution is done by means of non-blocking

point-to-point communications: MPI ISend, MPI IRecv.

4. Solve stiff CVs. Once all the data has been transfered, each process solves

its assigned tasks. The external tasks, i.e. the ones initially owned by

other processes are solved in first place, aiming to return the outgoing

results as soon as possible to the original process (MPI ISend).

5. Collect solutions: the processes which sent part of their tasks to others, re-

ceive the solutions back (MPI IRecv) and store them in the corresponding

memory space.

To summarize, the main steps of our load balancing strategy are outlined

in Algorithm 1. Note that three communication episodes are required by the

algorithm. First a collective communication to obtain the initial workload dis-

tribution across the processes. Then two point to point communications are

14

needed to distribute the workload and to collect the solutions back. In the

following section further details on the step 2 of the algorithm are provided.

Algorithm 1 Parallel load balancing strategy

1: Determine workloads

2: Define a new balanced distribution

3: Workload distribution

4: Solve stiff CVs

5: Collect solutions

4.1. Define a new balanced distribution

Algorithm 2 is used to define a balanced workload distribution and the corre-

sponding communication scheme. The input of the algorithm is an array I such

that I[p] contains the number of initial stiff CVs owned by process p. The array I

is obtained in the first step of Algorithm 1 as a result of a MPI Alltoall commu-

nication. The outputs of the algorithm are the arrays SendTo and RecvFrom

of dimension P , that contain in position p the number of tasks to send and

to receive to/from process p, respectively, by the parallel process running the

algorithm. Note than only one of the two output vectors will have non null

values.

In the first 10 lines of Alg. 2, the arrays O, S and R of dimension P are

evaluated. O[p] are the number of originally owned tasks to be solved by the pth

parallel process; and S[p] and R[p], the number of owned tasks to be sent and

the number of external tasks to be received by/from the p’th parallel process,

respectively. Finally, at line 11, the number of tasks to be reassigned, Nre, is

evaluated as Nre =
∑

p S[p], which equals
∑

pR[p].

In the next loop of the algorithm, which covers lines 12-25, the arrays

SentTask and RecvTask of dimension Nre are evaluated. In the i’th position,

these contain the rank of the process sending and receiving the i’th reassigned

task, respectively. Note that this reassignment is independent of the underlying

partition.

15

Finally, once the “sender” and “receiver” of each reassigned task are deter-

mined, the evaluation of the vectors SendTo and RecvFrom, which determine

the communication operations for the process running the algorithm, is straight-

forward. This is performed in the last loop of the algorithm, corresponding to

lines 26-34. The cost of this sequential algorithm, that is replicated in each

processor involved in the parallel computation, is almost negligible.

5. Performance analysis

In this section the performance and scalability of the balancing algorithm

is analysed. In order to do so, two computing experiments considering the

main parameters affecting the efficiency of the algorithm have been carried out.

Specifically, the parameters considered in these studies have been: (i) the ratio

between the cost of the heavy calculation and the size of the message sent per

each heavy node, and (ii) the imbalance ratio of the parallel computation. Note

that heavy node denotes the nodes presenting a higher computational load than

the average in the domain. Heavy calculation refers to the set of mathematical

operations resulting in this additional load.

In order to carry out these studies it has been developed a simulation with

ncpu nodes per processor, where Nhn processors of the N CPUs involved in the

parallel simulation have heavy nodes. These processors have a variable number

of heavy nodes (hncpu) defined by a ratio θhn, i.e. hncpu = θcpuncpu. The ratio

of processors presenting heavy nodes is θN (Nhn = θNN). Hence, the total

number of nodes in a simulation is nt = ncpuN , and the total number of heavy

nodes is hnt = hncpuNhn = θcpuncpuθNN .

The heavy calculation performed by the heavy nodes consists in a matrix

inversion plus a numerical Jacobian evaluation of a system with size hcss re-

peated hcit times, mimicking the Newton’s method. The size of the message

communicated between processors for each heavy node consists in mshn doubles.

All the studies have been carried out in the MareNostrum IV supercomputer,

hosted by the Barcelona Supercomputing Center (BSC). MareNostrum is based

16

Algorithm 2 Define a new balanced distribution and the corresponding communi-

cation scheme

1: N =
∑P

p=0 I[p]

2: Iopt = dNP e

3: for 0 ≤ p < P do

4: O[p] = Iopt

5: if P − p ≤ PIopt −N then

6: O[p] = O[p]− 1

7: end if

8: S[p] = min(0, I[p]−O[p])

9: R[p] = min (0, O[p]− I[p])

10: end for

11: Nre =
∑

p S[p]

12: cont send = cont recv = 0

13: for 0 ≤ p < P do

14: if S[p] > 0 then

15: for 0 ≤ i < S[p] do

16: SentTask[cont send] = p

17: + + cont send

18: end for

19: else

20: for 0 ≤ i < R[p] do

21: RecvTask[cont recv] = p

22: + + cont recv

23: end for

24: end if

25: end for

26: rg = rang of the executing parallel process

27: for 0 ≤ i < Nre do

28: if SendTask[i] == rg then

29: + + SendTo[RecvTask[i]]

30: end if

31: if RecvTask[i] == rg then

32: + + RecvFrom[SentTask[i]]

33: end if

34: end for

on Intel Xeon Platinum processors, Lenovo SD530 Compute Racks, a Linux

Operating System and an Intel Omni-Path interconnection [34]. The studies

have been done from 240 up to 1920 CPUs. The studies analyses the Speed-

up ratio (Sr) obtained in the simulations when using the presented dynamic

balancing algorithm. Sr is defined as the computing time of an unbalanced

17

simulation (tunb) divided by the computing time of a simulation using the load

balancing method (tbal):

Sr =
tunb
tbal

. (14)

Hence, Sr will provide a value showing how many times faster is a computation

using the load balancing algorithm than the same one not employing it.

The first parametric study has analysed the impact of the ratio between

the computing cost of the heavy calculation and the size of the message sent

per each heavy node. In order to characterise this ratio it has been defined the

parameter ζ as:

ζ =
hcsshcit
mshn

, (15)

where the numerator takes into account the computing cost of the heavy calcu-

lation while the denominator accounts for the communication effort. Therefore,

high values of ζ stand for cases where the computing cost of the heavy calcula-

tion is big and the communicated message size small. On the other hand, small

values of ζ represent cases with a large number of communicated values and

heavy calculations with a small computing cost.

The set-up for the simulations carried out in this study is as follows: each

processor has ncpu = 200 nodes, and the percentage of processors with heavy

nodes is 25 %, hence θN = 0.25. The number of heavy nodes per CPU is set to

hn = 100, i.e. θcpu = 0.5. The studies were done for several values of ζ, ranging

from ζ = 0.01 up to ζ = 100. The results are shown in Fig. 2. As can be seen,

for higher values of ζ the obtained Sr is better than for lower values of ζ. This

is expected, since high values of ζ result in both more imbalance, i.e. larger

potential benefits of the balancing process; as well as lower overhead of commu-

nications, as the resulting ratio of flops per byte transferred through the network

is higher. Nonetheless, for all the cases there is a clear advantage in employing

the load balancing algorithm, since all the simulations using it are accelerated,

at least by a factor of 1.75. Notice that for higher ζ values the Speed-up ratio

18

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

240 480 960 1920

S
r

N

ζ=0.01

ζ=0.1

ζ=1

ζ=10

ζ=100

Figure 2: Speed-up ratio (Sr) for different ratios between the computational cost and the size

of the message sent by heavy nodes (ζ) depending on the number of processors N .

Sr decreases less when increasing the number of CPUs (N) than for small val-

ues of ζ. This is because the latter cases imply a higher communication cost

with respect to the computing cost of the heavy calculation. Additionally, when

increasing the number of CPUs of the simulation more communications have to

be performed, reducing the Speed-up ratio Sr.

Regarding the second parametric study, it has been analysed the impact of

the load imbalance in the performance of the presented algorithm. In order

to modify the imbalance on the simulations it has been defined that the total

number of heavy nodes in the simulation was the 25 % of the total number of

nodes, i.e. hnt = 0.25nt. These heavy nodes have been assigned to the different

CPUs involved in the computation following a continuous uniform distribution,

from the most unbalanced situation, where all the heavy nodes are located in

the minimum number of CPUs, up to a perfectly balanced simulation, where

the heavy nodes are uniformly distributed among all the CPUs. In order to

quantify this imbalance it has been defined the parameter Θ, ranging from

Θ = 0 for the most unbalanced situation up to Θ = 1 for the fully balanced

case. A representation of the studied heavy nodes distributions is given in Fig. 3.

The y-axis shows the ratio of heavy nodes per CPU (hncpu/ncpu). The x-axis

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hn
cp

u/
n c

pu

Normalized CPU id

Θ=0
Θ=0.25

Θ=0.5
Θ=0.75

Θ=1

Figure 3: Representation of the heavy node distribution among the CPUs depending on

parameter Θ.

corresponds to the normalized CPU id. The other parameters of the simulation

have been fixed and set to ncpu = 200, hcss = 5, hcit = 5, and mshn = 10,

giving a value of ϑ = 2.5. The results obtained for this study are depicted in

Fig. 4. The higher the imbalance, the better the Speed-up ratio Sr. For all the

range of Θ, it is observed that the Speed-up ratio Sr slightly decreases when N

increases, due to the increment in the number of communications. Since cases

with Θ = 1 are perfectly balanced, the algorithm cannot redistribute the load

to speed-up the simulation. Hence, ideally a Speed-up ratio Sr = 1 is expected.

However, values of Sr slightly below unity are observed. This is due to the

overhead caused by the load balancing algorithm calculating a new balanced

distribution (step 2 of Algorithm 1) on simulations that are already balanced.

Thus, the studies carried out in this section demonstrate the capability of the

algorithm to dynamically balance parallel simulations presenting an unbalanced

computational load. As observed, this algorithm allows to speed-up the unbal-

anced simulations. The value of this Speed-up Sr will depend on the conditions

of the simulation. Better Speed-up values will be obtained the more unbalanced

the workload is, as well as the higher is the ratio between the computing cost

of the heavy calculation and the size of the message sent by each heavy node.

20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

240 480 960 1920

S
r

N

θ=0

θ=0.25

θ=0.5

θ=0.75

θ=1

Figure 4: Speed-up ratio (Sr) for different imbalance ratio (Θ) and number of processors N .

6. Benchmark test case: the Cambridge autoignition experiment

After the study carried out in order to analyse the performance and ca-

pabilities of the load balancing algorithm developed, this one is tested on a

combustion simulation. The reference case chosen is the well-known Cambridge

autoignition experiment performed by Markides and Mastorakos [17]. The test

case consists of a fuel jet, a mixture of hydrogen H2 and nitrogen N2, flowing

through a nozzle located at the centre of a co-flowing air stream (see Fig. 5).

The air is preheated at different temperatures in order to study its impact in the

autoignition behaviour of hydrogen under this geometrical configuration. The

co-flowing air is forced to pass through a perforated plate to generate turbu-

lence. The perforated plate (3.0 mm holes and 44 % blockage) is located 63 mm

upstream of the fuel nozzle in order to allow turbulence to develop. The fuel

nozzle has a diameter of 2.25 mm and is thin-walled (0.32 mm). The main test

section consists of a 500 mm long and 25 mm inner diameter vacuum insulated

quartz tube.

The experiment was performed over a wide range of operating conditions.

Four regimes were identified, namely no ignition, random spots, flashback and

lifted flame. In the present work, the case with the following operating condi-

21

Figure 5: Schematic representation of the ex-

periment presented by Markides and Mas-

torakos [17].

(a) 3ms (b) 5ms (c) 7ms

Figure 6: Temperature field at different times

in the simulation with Tair = 950 K.

tions has been chosen: Ujet = 26 m s−1 , Uair = 26 m s−1 , Tjet = 750 K and

Tair = 950 K. For this case, the fuel is a mixture of H2 and N2 (YH2
= 0.13,

YN2 = 0.87) and the co-flow oxidizer is air (YO2 = 0.233, YN2 = 0.767). The

selected case belongs to the random spots regime, characterised by the appear-

ance of auto-ignition kernels that are quenched before they could act as a flame

anchoring point or a flashback, and are convected out of the domain. This case

is chosen because the random spots regime is the most challenging one for the

workload distribution. This regime is chaotic and does not allow to know a

priori the regions where combustion will occur. Moreover, the workload of the

CPUs will change and evolve dynamically during the simulation. The tempera-

ture field at three different time instants of the numerical simulation are shown

in Fig. 6. In these figures can be clearly seen the described behaviour of the

random spots regime, with the appearance and quenching of the auto-ignition

kernels.

22

6.1. Simulation set-up

The simulations have been carried out employing the finite-rate chemistry

model under the framework of LES modelling. In the present study the Wall-

adapting eddy viscosity model (WALE) SGS model [35] is used. The WALE SGS

model is based on the square of the velocity gradient tensor. The SGS viscosity

obtained with this model takes into account the strain and the rotation rate of

the smallest resolved turbulent fluctuations. Some features of this model are its

capability of switching off in two-dimensional flows, in laminar flows, and when

the length-scale is in the range of Re−3/4. The unresolved scalar fluxes of both

energy and species transport equations are modelled using a gradient assumption

[5], where a turbulent Prandtl number (Prt) and a turbulent Schmidt number

(Sct) are assumed for the energy and species conservation equations respectively.

The values Prt = 0.4 and Sct = 0.4 have been employed in the present work.

For the current case a perfect mixing at SGS is considered, assuming that

the turbulent subgrid time-scale is shorter than the time-scales of the chemical

reactions (τt � τc). This assumption is supported in the relatively low-Reynolds

number of the case and in the results obtained in the previous study presented

by Muela et al. [36]. This approach means that the subgrid chemistry-flow

interaction is not modelled, and therefore ẇk ≈ ẇk.

The chemical reactions are modelled employing the detailed reaction mech-

anism for hydrogen of 9 species and 21 reactions developed by Mueller et al.

[23].

The pressure-velocity coupling is solved by means of the Fractional Step

projection method [37]. The idea behind this technique is to split the momen-

tum in two steps, with a first explicit step where an intermediate velocity û is

obtained, followed by a second step where the pressure is solved implicitly and

the intermediate velocity is corrected obtaining the physical velocity.

In order to reproduce the turbulence generated by the perforated plate, an

auxiliary non-reactive simulation is performed in an annular mesh, recreating

the physical domain upstream to the injector lips, where the plate is placed

inside the domain using the immerse boundary technique [38]. The unsteady

23

velocity field generated 63 mm downstream of the perforated plate is saved,

and later injected in the simulated domain through the co-flowing section. This

method allows a significant saving of computational resources during simulation

time, and develops a realistic divergence-free velocity field. For the fuel inflow

a laminar parabolic velocity profile is employed with Umean = Ufuel. For the

walls, a free-slip boundary condition is used. Therefore, the flow is not well

resolved near the wall, but since all the phenomena of interest take places far

from the wall, a well resolved shear-layer near the wall is not of interest [39].

Regarding the outlet, a reference atmospheric pressure has been fixed.

The mesh employed for this case has been generated from a 2D plane normal

to the streamwise direction of the flow and extruded in this direction. The 2D

mesh is unstructured, constructed with 16660 triangular elements, refined in the

inner jet and the air-fuel shear layer regions, and coarsened close to the walls.

This 2D mesh has been extruded in 675 planes with a height of 0.2 mm each

one, giving a total number of more than 11M CVs.

Two studies have been carried out: (i) a strong speed-up test analysing the

scalability of the algorithm in a realistic combustion simulation, and (ii) a test

comparing two simulations with the same set-up, one employing the dynamic

load balancing algorithm and a second one which do not employ it, aiming to

study the Speed-up ratio Sr obtained employing the algorithm. In this case

a strong speed-up test is employed to study the scalability of the algorithm.

A weak speed-up test will imply modify the number of CVs for the different

meshes. Since the size of the simulated domain can not be modified (is the

one of the experiment), modifying the number of CVs will imply a change in

their size, affecting the resolved physics of the problem, and hence, generating

differences in the results.

One relevant aspect for the dynamic balancing algorithm is the size of the

message that is sent between the processors when distributing the tasks, as well

as when recollecting the outsourced solutions. Each node that delegates the

implicit integration to an external processor sends a message of 4+2Ns doubles,

where Ns is the number of species. This message contains the size of the buffer

24

sent per each node, an ID identifying the node sending the info, the density ρ,

the temperature T , and values Y n+1
k plus Yk

p, where the former is employed as

first guess in the Newton’s method. Regarding the recollection step, the size of

the message is of 3 +Ns doubles, including the ID of the node that request the

solution, the integrated values Y n+1
k , and two auxiliary values indicating the

number of iterations and Jacobian evaluations performed by Gear’s method to

converge the solution. Although in this case some of the values can be treated as

integers instead of doubles, helping to reduce the message size, the heart of the

balancing algorithm has been developed seeking generality. Therefore, in this

first version all the communicated values are considered as doubles. However, it

is an aspect that can be improved in upcoming versions of the algorithm.

6.2. Results and discussion

Before presenting the results obtained for both studies, some illustrative

results of this benchmark combustion case obtained employing the described

set-up are presented. The autoignition length obtained for four different tem-

peratures of the co-flowing air stream are depicted in Fig. 7a. The four co-

flowing air temperatures are 950 K, 955 K, 960 K and 980 K. The ignition

length is determined using as ignition criterion a rise of a 1 % over the initial

co-flow temperature. In the three cases with a co-flowing air temperature below

Tair = 960 K, the ignition length oscillates around a mean. This is caused by

the appearance of random auto-ignition kernels, which are quenched and con-

vected out of the domain before they can act as an anchoring point or derive

in a flashback. This process where an ignition kernel appear, briefly grows, and

then is quenched is repeated periodically along the simulation time, resulting

in the oscillatory auto-ignition length. Thus, these three cases clearly belong to

the random spots regime previously described. In contrast, for Tair = 980 K,

once ignited, the ignition length decreases progressively as the flame propagates

upstream. Therefore, this case falls inside the flashback regime.

These results are in agreement with the ones obtained in the experiment car-

ried out by Markides and Mastorakos [17] where, for the conditions reproduced

25

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

A
u
to

ig
n
it

io
n
 l

en
g
th

 [
m

m
]

Time [ms]

Tair = 950 K
Tair = 955 K

Tair = 960 K
Tair = 980 K

(a) Evolution of ignition lenghts.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 940 950 960 970 980 990 1000

A
u
to

ig
n
it

io
n
 l

en
g
th

 [
m

m
]

Coflow Temperature [K]

Exp. Mean
Exp. Min.

LES Mean
LES Min.

(b) Mean and minimum ignition lengths.

Figure 7: Results for the Cambridge autoignition experiment.

in the present work, the boundary between both regimes was found around a

co-flow temperature of 965 K. Hence, the simulations reproduce the physics

behind the hydrogen autoignition process taking place in this configuration. In

Fig. 7b, the mean and minimum autoignition lengths obtained in the simulations

are summarized and compared against the results obtained in the experiment

(since case Tair = 980 K is a flashback flame, the mean autoignition length

plotted is the position where the first autoignition event takes place). As can

be seen, the obtained results are close to the experimental ones, although the

auto-ignition mean and minimum lengths are slightly under-predicted.

The strong speed-up for the momentum, species and energy solvers, as well

as the one of the overall simulation are depicted in Fig. 8a. The scalability of

both energy and species solvers is similar and very good. However, the global

scalability is affected by the momentum solver, which presents a lower scalability.

This is due to the solver for the Poisson equation. In this strong speed-up test,

the number of CVs per CPU range from ∼ 47000 for the case in 240 CPUs to

∼ 6000 for simulations in 1920 CPUs. These ratios of CVs per CPU are small

and, consequently, the communications overhead becomes more important than

the time spent in the solution of the Poisson equation. In order to have a good

strong scalability larger workloads per CPU are required. A detailed study of

the scalability of TermoFluids code on up to 130K CPU-cores can be found in

26

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 240 480 960 1920

S
tr

o
n
g
 S

p
ee

d
-u

p

CPUs

Total
Momentum

Species

Energy
Ideal

(a) Strong speed-up.

 0

 0.2

 0.4

 0.6

 0.8

 1

 240 480 960 1920

C
lo

ck
 t

im
e

n
o
rm

.

CPUs

Total
Momentum

Species
Energy

(b) Normalized elapsed time.

Figure 8: Results for the transport equations in the strong speed-up test.

[40]. This issue of a low parallel scalability for small ratios of CVs per processor

has also been reported in other works and CFD codes, as the one presented by

Velghe et al. [9]. Nevertheless, the focus of the current work is placed on the

species solver, which exhibits a very good speed-up scalability. Aiming to see

the relevance of each solver regarding the total computing time, the normalized

elapsed time spent solving each transport equation, as well as the total time of

the simulation, are depicted in Fig. 8b. Each simulation has been normalized by

its total time. Obviously, the relative cost of the solvers with better scalability

(species and energy) reduces, while the relative cost of the momentum solver,

with lower parallel efficiency, grows.

Next, the focus is placed on the species solver and specially on the compu-

tational step involving the implicit integration of the mass reaction rates. The

total time has been split in two parts: one involving the calculations (i.e., the

time spent doing the implicit integration by means of the Gear’s method), and a

second part accounting for the communication of the data and its buffering (al-

though the latter is very small compared to the time spent in communications).

Figure 9 shows the evolution of the normalized time spent on each part with

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 240 480 960 1920

C
lo

c
k
 t

im
e
 n

o
rm

.

CPUs

Total Calc. Comm.

Figure 9: Normalized elapsed time in the strong speed-up test of the implicit integration stage.

the number of CPUs. It can be appreciated a trend that when the number of

CPUs increases, more time is devoted to the communications while less time is

spent in the calculations. Since the developed load balancing algorithm is able

to redistribute the computing load equitably between all the processors, the to-

tal amount of calculations are done faster. However, since more processors are

involved, the cost in the communications is increased.

Regarding the second study, which compares two simulations with the same

set-up but where one employs the load balancing algorithm and a second one

which not, the results are depicted in Fig. 10. This study was carried employing

960 CPUs. The evolution of the normalized clock time accumulated by each

simulation versus the physical time is plotted in Fig. 10a. The figure shows both

the time spent just by the species solver, including the evaluation of the species

mass reaction rates, as well as the time spent by the whole simulation, involving

all the solvers. It can be seen that the balanced simulation clearly outperforms

the unbalanced one, demonstrating the great advantage that comes when the

dynamic balancing algorithm is used. But the figure also allows to see other

very interesting aspects. As previously explained, the solved case belongs to

the random spots regime, where auto-ignition kernels appear but are quenched

before they could act as a flame anchoring point or a flashback, and are convected

28

out of the domain. It can be seen that up to time ∼ 2.1 ms both balanced and

unbalanced simulations take a very similar computing time. This is because

before this time-step there is no combustion, and only when auto-ignition occurs

and the first ignition kernel appears, the simulation begins to have unbalanced

CPUs due to the presence of active chemical reactions. Notice that the slope of

the curve belonging to the balanced simulation is almost equal before and after

the first auto-ignition event, i.e., the dynamic balancing algorithm is able to

redistribute the additional computing load very efficiently. On the other hand,

when the auto-ignition kernels begin to appear, unbalanced simulation become

clearly slower. This behaviour can be more clearly seen in Fig. 10b, where

three Speed-up ratios Sr are shown. Two of them analyse the Sr obtained

specifically by the species solver and the other one shows the Sr achieved by

the whole simulation, i.e. accounting for all the solvers. The Speed-up ratios Sr

labelled as total are obtained taking into account the total elapsed computing

time till the i time-step, while the one labelled as ts is calculated using only

the computing time spent in each i time-step. Up to time ∼ 2.1 ms, where

there is no combustion and does not exist load imbalance in the simulation, the

three Sr present values very close to unity. However, once the first autoignition

event takes place, the Speed-up ratio Sr for each i time-step suddenly increase,

with values ranging between 4 and 10, depending on the imbalance. The higher

the imbalance, the higher the Sr obtained. Moreover, it can be appreciated

a relation between this value and the slopes of the curves belonging to the

unbalanced case shown in Fig. 10a. Higher values of Sr for i time-step match

with more pronounced slopes in Fig. 10a, while smaller values of Sr coincides

with decreases in the slopes. These changes in Sr and the slopes are due to the

behaviour of the random spots regime, where ignition kernels appear but are

quenched after a short living time. Higher values of Sr and more pronounced

slopes are related to the presence of ignition kernels, while reductions in Sr

and the slopes occur after the kernels are quenched and before the ignition of

a new combustion kernel. Regarding the total Speed-up ratio, it takes values

very close to Sr ≈ 7 for the species solver and Sr ≈ 4 for the whole simulation

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9

C
lo

ck
 T

im
e

N
o
rm

.

time [ms]

Unb. (all)
Unb. (spe)

Bal. (all)
Bal. (spe)

(a) Normalised computing time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4 5 6 7 8 9

S
r

time [ms]

Spe. (ts)
Spe. (total)

All (total)

(b) Speed-up ratio Sr.

Figure 10: Comparison between an unbalanced and a balanced simulation in 960 CPUs.

in time 10 ms. This means that the balanced case achieved this physical time 4

times faster than the unbalanced computation.

7. Conclusion

A dynamic balancing algorithm well suited for parallel numerical simula-

tions where the computational load of the processors is unbalanced has been

presented and assessed. Typically, the partitioning of the meshes for parallel

simulations is done assuming a uniform distribution of the computational load

assigned to each node where the discretized equations are solved. Nevertheless,

in some cases this assumption is not true. If the computational load distribution

is known a priori, the partitioning of the mesh can be done using this informa-

tion. However, many times this information is not known before the simulation,

and other times the computational load of the nodes changes throughout the

simulation, resulting impossible a proper partitioning of the mesh. The imple-

mented dynamic balancing algorithm aims to help in these cases.

In the present work, the dynamic balancing algorithm has been adapted

and employed for combustion simulations. Specifically, it has been used to

30

properly distribute the additional computational load that appears due to the

implicit integration of the mass reaction rates of the species transport equations.

This species mass reaction rate is calculated from a stiff set of equations that

requires a special implicit integration method, which creates an imbalance in

the simulation.

A deep analysis of the performance of the algorithm has been presented,

demonstrating its capacity to properly distribute the computational load of

unbalanced simulations for different situations. Moreover, the dynamic balanc-

ing algorithm has been tested in a reference combustion case, the well-known

Cambridge autoignition experiment. The results show a good scalability of the

method, in agreement with the performance analysis carried out in the previous

section. Moreover, a comparison between a balanced and an unbalanced simula-

tion has been presented. The results of this comparison show that the dynamic

load balancing algorithm allows notably reducing the computing time in par-

allel simulations. Specifically, for the studied case, the presented methodology

allowed to speed up the simulation by a factor of 4. Nevertheless, as showed

in the present work, the capacity of the load balancing algorithm to speed up

the simulations will depend on their imbalance. The higher the imbalance, the

greater the acceleration.

This dynamic balancing algorithm has been designed seeking generality and

not case-specificity. Therefore, it can be employed for all kind of parallel sim-

ulations presenting unbalanced computational loads, and not only combustion

simulations. Then, some future works can involve the adaptation of the algo-

rithm to other physics.

Acknowledgements

This work has been financially supported by the Ministerio de Economı́a

y Competitividad, Spain (ENE2017-88697-R). We acknowledge PRACE for

awarding us access to resource MareNostrum IV based in Spain at Barcelona

Supercomputing Center.

31

References

[1] J. Janicka and A. Sadiki. Large eddy simulation of turbulent combustion

systems. Proceedings of the Combustion Institute, 30(1):537 – 547, 2005.

[2] R.W. Bilger, S.B. Pope, K.N.C. Bray, and J.F. Driscoll. Paradigms in

turbulent combustion research. Proceedings of the Combustion Institute,

30:21–42, 01 2005.

[3] Heinz Pitsch. Large-eddy simulation of turbulent combustion. Annual

Review of Fluid Mechanics, 38(1):453–482, 2006.

[4] Denis Veynante and Luc Vervisch. Turbulent combustion modeling.

Progress in Energy and Combustion Science, 28(3):193 – 266, 2002.

[5] Thierry Poinsot and Denis Veynante. Theoretical and numerical combus-

tion. RT Edwards, Inc., 2005.

[6] Federico Perini, Emanuele Galligani, and Rolf D Reitz. An analytical ja-

cobian approach to sparse reaction kinetics for computationally efficient

combustion modeling with large reaction mechanisms. Energy & Fuels,

26(8):4804–4822, 2012.

[7] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential

Equations II: Stiff and Differential-Algebraic Problems. Lecture Notes in

Economic and Mathematical Systems. Springer, 1993.

[8] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numer-

ical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge

University Press, 2007.

[9] A. Velghe, N. Gillet, and J. Bohbot. A high efficiency parallel unstructured

solver dedicated to internal combustion engine simulation. Computers and

Fluids, 45(1):116–121, 2011.

32

[10] David J. Torres, Yuanhong H. Li, and Song-Charng Kong. Partitioning

strategies for parallel KIVA-4 engine simulations. Computers and Fluids,

39(2):301 – 309, 2010.

[11] David J. Torres and Mario F. Trujillo. Kiva-4: An unstructured ALE code

for compressible gas flow with sprays. Journal of Computational Physics,

219(2):943 – 975, 2006.

[12] D. Thévenin, F. Behrendt, U. Maas, B. Przywara, and J. Warnatz. De-

velopment of a parallel direct simulation code to investigate reactive flows.

Computers and Fluids, 25(5):485–496, 1996.

[13] Yu Shi, William H Green, Hsi-Wu Wong, and Oluwayemisi O Oluwole.

Accelerating multi-dimensional combustion simulations using gpu and hy-

brid explicit/implicit ode integration. Combustion and Flame, 159(7):2388–

2397, 2012.

[14] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.

Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian

Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.

Graham, and Timothy S. Woodall. Open MPI: Goals, concept, and de-

sign of a next generation MPI implementation. In Proceedings, 11th Euro-

pean PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary,

September 2004.

[15] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley

Professional, 4th edition, 2013.

[16] C. William Gear. Numerical Initial Value Problems in Ordinary Differential

Equations. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1971.

[17] C.N. Markides and E. Mastorakos. An experimental study of hydrogen

autoignition in a turbulent co-flow of heated air. Proceedings of the Com-

bustion Institute, 30(1):883–891, 2005.

33

[18] A. Favre. Turbulence - Space-time statistical properties and behavior in

supersonic flows. Physics of Fluids, 26:2851–2863, October 1983.

[19] P. Sagaut. Large Eddy Simulation for Incompressible Flows: An Introduc-

tion. Scientific Computation. Springer, 2006.

[20] J. Ventosa-Molina, J. Chiva, O. Lehmkuhl, J. Muela, C. D. Pérez-Segarra,

and A. Oliva. Numerical analysis of conservative unstructured discretisa-

tions for low mach flows. International Journal for Numerical Methods in

Fluids, 84(6):309–334, 2017.

[21] Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty,

Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Han-

son, Soonho Song, William C. Gardiner, Vitali V. Lissianski, and Zhiwei

Qin. GRI-Mech 3.0. http://www.me.berkeley.edu/gri-mech/. Accessed:

13/09/2017.

[22] H.C. de Lange and L.P.H. de Goey. Two-dimensional methane/air flame.

Combustion science and technology, 92(4-6):423–427, 1993.

[23] M.A. Mueller, T.J. Kim, R.A. Yetter, and F.L. Dryer. Flow reactor stud-

ies and kinetic modeling of the H2/O2 reaction. International Journal of

Chemical Kinetics, 31(2):113–125, 1999.

[24] J.A. Miller and R.J. Kee. Chemical nonequilibrium effects in hydrogen-

air laminar jet diffusion flames. The Journal of Physical Chemistry,

81(25):2534–2542, 1977.

[25] R.J. Kee and J.A. Miller. A split-operator, finite-difference solution for

axisymmetric laminar-jet biffusion flames. AIAA Journal, 16(2):169–176,

1978.

[26] J.B. Vos. Calculating turbulent reacting flows using finite chemical kinetics.

AIAA journal, 25(10):1365–1372, 1987.

34

[27] P.J. Coelho and J.C.F. Pereira. Calculation of a confined axisymmetric

laminar diffusion flame using a local grid refinement technique. Combustion

science and technology, 92(4-6):243–264, 1993.

[28] O. Holm-Christensen, I.P. Jones, N.S. Wilkes, B.A. Splawski, and P.J.

Stopford. The solution of coupled flow and chemistry problems. Progress

in Computational Fluid Dynamics, an International Journal, 1(1-3):43–49,

2001.

[29] R. Cònsul, C.D. Pérez-segarra, K. Claramunt, J. Cadafalch, and A. Oliva.

Detailed numerical simulation of laminar flames by a parallel multiblock

algorithm using loosely coupled computers. Combustion Theory and Mod-

elling, 7(3):525–544, 2003.

[30] Jordi Muela. Modelling and numerical simulation of combustion and multi-

phase flow using finite volume methods on unstructured meshes. PhD thesis,

Universitat Politècnica de Catalunya, 2018.

[31] George Karypis and Vipin Kumar. A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM Journal on scientific Com-

puting, 20(1):359–392, 1998.

[32] Llúıs Jofre, Ricard Borrell, Oriol Lehmkuhl, and Assensi Oliva. Parallel

load balancing strategy for volume-of-fluid methods on 3-d unstructured

meshes. Journal of Computational Physics, 282:269–288, 2015.

[33] Llúıs Jofre, Oriol Lehmkuhl, Jesús Castro, and Assensi Oliva. A 3-D

Volume-of-Fluid advection method based on cell-vertex velocities for un-

structured meshes. Computers & Fluids, 94:14–29, 2014.

[34] MareNostrum IV (2017) System Architecture (BSC). https://www.

bsc.es/marenostrum/marenostrum/technical-information. Accessed:

13/03/2019.

35

[35] Franck Nicoud and Frédéric Ducros. Subgrid-scale stress modelling based

on the square of the velocity gradient tensor. Flow, turbulence and Com-

bustion, 62(3):183–200, 1999.

[36] J. Muela, O. Lehmkuhl, A. Oliva, and J. Ventosa-Molina. Large eddy

simulation of hydrogen autoignition in a preheated turbulent co-flow. In

Proceedings of the 8th Mediterranean Combustion Symposium (MCS8), 8-

13 September 2013. Cesme-Izmir, Turkey.

[37] J. Kim and P. Moin. Application of a fractional-step method to in-

compressible Navier–Stokes equations. Journal of Computational Physics,

59(2):308–323, 1985.

[38] Rajat Mittal and Gianluca Iaccarino. Immersed boundary methods. Annu.

Rev. Fluid Mech., 37:239–261, 2005.

[39] W.P. Jones and S. Navarro-Martinez. Study of hydrogen auto-ignition in a

turbulent air co-flow using a Large Eddy Simulation approach. Computers

and Fluids, 37(7):802–808, 2008.

[40] R. Borrell, J. Chiva, O. Lehmkuhl, G. Oyarzun, I. Rodŕıguez, and A. Oliva.

Optimising the termofluids CFD code for petascale simulations. Interna-

tional Journal of Computational Fluid Dynamics, 30(6):425–430, 2016.

Appendix A. Stiff cells detector

The criterion employed in order to decide which cells are integrated implicitly

is detailed in Section 3. The criterion is defined through an estimated chemical

time step ∆tchem which is calculated according to Eq. (13). The mathematical

form of this chemical time step is derived from the sensible enthalpy transport

equation applied to a 0D reactor [5, p. 18]:

ρ
dhs
dt

= ω̇T = −
N∑

k=1

∆h0
f,kω̇k. (A.1)

36

Then, approximating the derivative in the left hand-side as dhs

dt ≈
∆hs

∆t and

isolating ∆t the following expression is obtained:

∆t =
ρ |∆hs|∣∣∣∑N

k=1 ∆h0
f,kω̇k

∣∣∣ . (A.2)

Since ∆t is positive by default, the absolute values of both numerator and

denominator are taken. It is expected that this expression gives an estimation

of the time-scale of the energy release due to chemical reactions. In it, the

denominator detects the chemically active regions, while the numerator brings

the scaling. In chemically active regions, the value of the denominator increases,

leading to a decrease in the estimated chemical time-scale ∆tchem and thus,

allowing the algorithm to detect that an implicit treatment is required.

Aiming to illustrate the behaviour of this expression as detector of the chem-

ical time-scales, the results obtained in a constant pressure zero-dimensional

reactor are shown below. The employed chemical reaction mechanism is the

one derived by Mueller et al. [23]. As initial conditions for the constant pres-

sure 0D reactor a temperature of T = 950 K and an atmospheric pressure

P = 101325 Pa are set. Several initial values for the mixture fraction have been

computed, ranging from Z = 0.1 to Z = 0.4. For each case two plots are shown

in the following; (i) the evolution of the species mass fraction Yk and the temper-

ature T , each normalized by the maximum value obtained for each field during

the simulation, and (ii) the absolute value of the mass reaction rate ω̇k for all

the species. In both plots the ∆t obtained using Eq. (A.2) is also shown. This

value is plotted against the right y-axis (note the logarithmic scale). The plots

have been zoomed in around the time instant where auto-ignition occurs, aim-

ing to show the region of interest. The obtained results are shown in Figs. A.1

and A.2. Results only for Z = 0.1 and Z = 0.3 are shown for the sake of brevity.

Results for other mixture fraction values yielded the same conclusion.

As it can be seen, the derived time step ∆t evolves as expected. Focusing

on the evolution of the species mass fraction and the temperature, the figures

show that during the time-interval where the most rapid changes take place,

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0066 0.0067 0.0068 0.0069
1e-05

0.0001

0.001

0.01

0.1

time [s]

H
H2

H2O

H2O2
HO2

O

O2
OH

T

∆t

(a) Normalized species mass fractions Yk

and temperature T .

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.0065 0.0066 0.0067 0.0068
1e-05

0.0001

0.001

0.01

0.1

time [s]

H
H2

H2O

H2O2
HO2

O

O2
OH

∆t

(b) Absolute value of mass reaction rates

|ω̇k|.

Figure A.1: Constant pressure 0D reactor results for Z = 0.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1965 0.1966 0.1967 0.1968 0.1969 0.197
1e-05

0.0001

0.001

0.01

0.1

time [s]

H
H2

H2O

H2O2
HO2

O

O2
OH

T

∆t

(a) Normalized species mass fractions Yk

and temperature T .

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.1965 0.1966 0.1967 0.1968
1e-05

0.0001

0.001

0.01

0.1

time [s]

H
H2

H2O

H2O2
HO2

O

O2
OH

∆t

(b) Absolute value of mass reaction rates

|ω̇k|.

Figure A.2: Constant pressure 0D reactor results for Z = 0.3.

38

i.e. the ones linked to shorter time-scales, the ∆t criteria presents its smallest

values. This can be more clearly observed in the plots showing the evolution

of the absolute value of the mass reaction rates |ω̇k|. Higher values of |ω̇k|,

associated to faster changes and shorter time-scales, are strongly correlated with

smaller values of the calculated ∆t. In fact, the obtained ∆t is almost inversely

proportional to the highest absolute value of mass reaction rate |ω̇k| obtained in

the simulation. Thus, the proposed criteria is capable of tracking the chemically

active cells and detect the ones presenting stiff systems of equations.

Still, the time step ∆t estimated using Eq. (A.2) is larger than the one

required to explicitly integrate the species mass reaction rates ω̇k. Therefore,

an additional factor fr is added to Eq. (A.2). The aim is to obtain a better

estimation of the maximum time step that guarantees an accurate and stable

integration of the species mass reaction rates if an explicit integration method

is employed. With the addition of this coefficient, the final expression used

to calculate the chemical time-scale ∆tchem employed in the present work (see

Eq. (13)) is:

∆tchem = fr
ρ
∣∣∣(h−∑N

k=1 Yk∆h0
f,k

)∣∣∣∣∣∣∑N
k=1 ẇk∆h0

f,k

∣∣∣ . (A.3)

This parameter fr allows to adjust the criteria that the algorithm employs to

select which cells are integrated implicitly and which ones explicitly. Thus, its

value must be selected so that the product of fr and the time step ∆t obtained

from Eq. (A.2) results in a chemical time-scale ∆tchem that would guarantee

a stable and accurate explicit integration of the mass reaction rates in species

equation.

To some extent, this parameter fr can be regarded as a kind of threshold.

Smaller values of fr will result in more cells with a chemical time-scale ∆tchem

shorter than the time-step ∆t of the simulation used to integrate both convective

and diffusive terms for all the transport equations. Hence, this will increase the

amount of cells requiring an implicit integration. On the other hand, higher

values of fr will result in larger ∆tchem and, consequently, will lead to more cells

39

integrated explicitly. Despite this remark, the authors would like to highlight

that fr must be set according to a mathematical ground, i.e., ensuring a stable

integration of the system of equations. Unfortunately, so far has not been

found a closed form capable to directly obtain an optimal value for this fr.

Nonetheless, using the same reference to calculate the sensible enthalpy, the

order of magnitude of fr is quite constant. Therefore, based in a small experience

and trials with the employed chemical reaction scheme and the configuration set-

up of the simulation, it is easy and straightforward to set an optimal value for

it.

40

