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Abstract

How cooperation emerges in human societies is still a puzzle. Evolutionary game theory has been

the standard framework to address this issue. In most models, every individual plays with all others, and

then reproduce and die according to what they earn. This amounts to assuming that selection takes place

at a slow pace with respect to the interaction time scale. We show that, quite generally, if selection speeds

up, the evolution outcome changes dramatically. Thus, in games such as Harmony, where cooperation

is the only equilibrium and the only rational outcome, rapid selection leads to dominance of defectors.

Similar non trivial phenomena arise in other binary games and even in more complicated settings such

as the Ultimatum game. We conclude that the rate of selection is a key element to understand and model

the emergence of cooperation, and one that has so far been overlooked.
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1 Introduction

A fundamental, profound and broad-ranging unsolved question is how cooperation among animals and hu-

mans has evolved (Darwin, 1871; Maynard-Smith & Szathmáry, 1995; Pennisi, 2005). From the point of

view of natural selection, the question to be answered is why cooperation may be a better strategy for survival

or reproduction than a more selfish behavior. For this reason evolutionary game theory has been the mathe-

matical framework that has provided the deepest insights into this issue (Axelrod & Hamilton, 1981; Gintis,

2000; Nowak & Sigmund, 2004). Simple games such as the Prisoner’s Dilemma (Axelrod & Hamilton,

1981), the Snowdrift game (Sugden, 1986) or the Stag-Hunt game (Skyrms, 2003) have been the subject of

intense experimental and theoretical work along this line (Camerer, 2003). One of the main achievements

of this approach has been to show that the emergence of cooperation is sensitive to whether populations are

well-mixed, such as in replicator dynamics evolution (Taylor & Jonker, 1978; Hofbauer & Sigmund, 1998;

Gintis, 2000), or spatially structured (Nowak & May, 1992; Doebeli & Knowlton, 1998; Page, Nowak & Sigmund,

2000; Hauert & Doebeli, 2004). Co-evolution of agents and networks (Eguı́luz et al., 2005; Zimmermann & Eguı́luz,

2005) and finite population effects (Nowak et al., 2004) are also relevant factors to take into account inas-

much as they may enhance or hinder cooperation. However, none of these approaches has considered the

influence of different selection rates so far, surely because ever since Darwin it has been acknowledged that

natural selection acts at a very slow pace. Nevertheless, recent experiments show that this may not always be

the case (Hendry & Kinnison, 1999; Hendry et al., 2000; Yoshida et al., 2003): under certain circumstances

(e.g. strong predation or captive breeding) evolution selects for a new trait in just a few generations.

Generally, research on evolutionary game theory is based on a population of individuals or agents that

interact by playing a game. In the absence of spatial structure, it is posited that every agent plays the game

against every other one, and then reproduction proceeds according to the payoffs earned during the game

stage. For large populations, this amounts to saying that every player gains the payoff of the game averaged

in the current distribution of strategies. In terms of time scales, such an evolution corresponds to a regime in
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which selection takes place at a much slower rate than the interaction between agents. However, these two

time scales need not be different in general and, in fact, for many specific applications they can arguably be

of the same order (Hendry & Kinnison, 1999; Hendry et al., 2000; Yoshida et al., 2003).

Our main aim in this work is to show that the pace at which selection acts on the population is crucial for

the appearance and stability of cooperation. Even in non-dilemma games such as Harmony (Litch, 1999),

where cooperation is the only possible rational outcome, defectors may be selected for if population renewal

is very rapid. Similar results hold true for several others games, thus pointing out the necessity to include

a discussion on the rate of selection, compared to the rate of interaction, in any study about cooperation or

any other situation modelled by evolutionary games.

2 Setting: Dynamics and games

When selection acts at a much slower rate than interaction, a widely used tool to analyze frequency-

dependent selection without mutation is replicator dynamics (Taylor & Jonker, 1978; Hofbauer & Sigmund,

1998; Gintis, 2000). Replicator dynamics assumes a well-mixed population where all agents interact before

selection, with a per capita growth rate of each strategy proportional to its fitness (the payoff earned in a

round of games between selection events). However, as stated in the previous section, we aim to understand

the effects of different selection rates. To this end, we introduce the following new dynamics: There is a

population withN players. A pair of individuals is randomly selected for playing, earning each one an

amount of fitness according to the rules of the payoff matrix of the game. This game act is repeateds times,

choosing a new random pair of players in each occasion.

After every s games, selection takes place. Following Nowak et al. (2004), we have chosen Moran

dynamics (Moran, 1962) to model selection in a finite population. One individual among the population ofN

players is chosen for reproduction proportionally to its fitness, and its offspring replaces a randomly chosen

individual. As the fitness of all players is set to zero before the following round ofs games, the overall result
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is that all players have been replaced by one descendant, but the player selected for reproduction has had a

reproductive advantage of doubling its offspring at the expense of the randomly selected player. It is worth

noting that the population sizeN is therefore constant along the evolution.

The parameters controls the time scales of the model, i.e. reflects the relation between the rate of

selection and the rate of interaction. Fors ≪ N selection is very fast and very few individuals interact

between selection events. Higher values ofs represent proportionally slower rates of selection. Thus, when

s ≫ N selection is very slow and population is effectively well-mixed.

It only remains to specify the games we will be studying in this paper, namely binary games. These

have been widely used in evolutionary game theory, because of their simplicity and amenability for both

analytical treatment and computer simulation. A symmetrical binary game is completely defined by its2×2

payoff matrix (or normal form, see e.g. Gintis (2000))

C D

C

D









a

b

c

d









,
(1)

whose rows give the payoff obtained by each strategy when confronted to all others including itself. When

interpreted as a model for the emergence of cooperation, C and D denote, respectively, the strategies ”coop-

erate” and ”defect”. Different kinds of games have been defined according to the relations between the four

coefficients of the matrix (Rapoport & Guyer, 1966).

3 Results

The dynamics we introduced in the previous section can be studied analytically and exactly in the following

manner: Let us denote by0 ≤ n ≤ N the number of cooperators present in the population. We calculate the

probabilityxn of ending up in staten = N (i.e., all players cooperate) when starting in staten < N . Fors =

1 ands → ∞, we obtain an exact, analytical expression forxn. For arbitrary values ofs, such a closed form
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cannot be found; however, it is possible to carry out a combinatorial analysis of the possible combinations

of rounds and evaluate, numerically but exactly,xn. See appendix A for the detailed mathematics.

As our first and most striking example of the influence of the selection rate, we will start by considering

the Harmony game (Litch, 1999), determined bya > c > b > d. Theonly Nash equilibrium of this game

is (C,C) , as it is obvious from the payoffs: The best option for both players is to cooperate, which yields

the maximum payoff for each one. When this game is framed in our dynamical model, Fig. 1a shows that

the rationally expected outcome, namely that the final population consists entirely of cooperators, is not

achieved for small and moderate values of the selection rate parameters. For the smallest values, only when

starting from a population largely formed by cooperators there is some chance of reaching full cooperation;

most of the times, defectors will eventually prevail and invade the whole population. This counterintuitive

result may arise even for values ofs comparable to the population size, by choosing suitable payoffs (not

shown). Interestingly, the main result that defection is selected for small values ofs does not depend on the

population sizeN ; only details such as the shape of the curves (cf. Fig. 1b) are modified byN .

[Figure 1 here]

In the preceding paragraph we have chosen the Harmony game to discuss the effect of the rate of se-

lection, but this effect is very general and appears in many other games. To see this, consider the example

of the Stag-Hunt game (Skyrms, 2003), with payoffsa > c > d > b. This is the paradigmatic situation

of a 2 × 2 game with two Nash equilibria in pure strategies, one Pareto-dominant (Gintis, 2000)(C,C), in

which players maximize their payoffs, and the other risk-dominant (Gintis, 2000)(D,D), in which players

minimize the possible damage resulting from a defection of the partner. Which of these equilibria is selected

has been the subject of a long argument in the past, and rationales for both of them can be provided. As Fig.

2 shows, results for smalls are completely different from those obtained for larger values. Indeed, we see

that fors = 1, all agents become defectors except for initial densities of cooperators close to 1. However,

for values ofs & N the resulting curve is quasi-symmetrical, reflecting a much more balanced competition
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between both strategies.

[Figure 2 here]

Yet another example of the importance of the selection rate is provided by the Snowdrift game (Sugden,

1986), defined by the payoffsc > a > b > d. Also known as Chicken or Hawk-Dove, it is a dilemma game

not unrelated to, but different from, the Prisoner’s dilemma. Fig. 3 shows that for small values ofs defectors

are selected for almost any initial fraction of cooperators. Whens increases, we observe an intermediate

regime where both full cooperation and full defection have a nonzero probability, which, interestingly, is

almost independent of the initial population. And, for large enoughs, full cooperation is almost always

achieved.

[Figure 3 here]

Finally, we show for completeness the results for the most ubiquitous game in studies about the evolution

of cooperation: the Prisoner’s Dilemma (Axelrod & Hamilton, 1981), with payoffsc > a > d > b. As is

well known, in this game the rational choice is to defect. The effect of a small number of games, shown in

Fig. 4, is to bias the game even more towards defection. In any case, the initial density of cooperators must

be very large for cooperation to have some chance of becoming the selected strategy, but for small values of

s this requirement is most severe. Therefore, the parameters does not change the qualitative behavior of the

Prisoner’s Dilemma, alhtough once again lows works against cooperation.

[Figure 4 here]

Similar results are to be found in almost any binary game. Indeed, it can be shown that D strategists are

selected for when the payoffs satisfyb < c in the extreme cases = 1, irrespective ofa, d, or the population

sizeN (cf. Eq. (9) in appendix A). Largers values can not be analyzed in such a simple manner and, in

particular, the corresponding results depend on all four parameters of the payoff matrix.

The reason for this dramatic influence of the parameters resides in the resulting fitness distribution over

the population. For large values ofs (s & N), most agents have played between selection events, and as a
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consequence most of the population has nonzero payoff, which in turn implies a nonzero probability of being

selected for reproductive advantage. On the contrary, with smalls (s ≪ N) the distribution concentrates on

the few players that have actually played, these ones being the only candidates for selection. This results in

a completely different probabilistic scenario, with the consequences reflected in the results above.

As a specific example, consider the Stag-Hunt game shown in Fig. 2, for the particular initial number of

cooperatorsn = N/2. With values ofs & 100, the payoffs are distributed to a large set of pairs of players,

with approximate frequencies of1/4 (C,C), 1/4 (D,D) and1/2 (C,D) or (D,C). Given that the payoff

matrix fulfills a + b = c + d, both strategies collect a practically equal amount of fitness, thus with no

reproductive advantage for any strategy and thenxn ≈ 0.5. However, considering the case ofs ≪ 100, only

a few pairs are selected to play. With pairs(C,C) or (D,D), the reproductive advantage is obviously the

same, as only one strategy receives all the fitness. But pairs(C,D) or (D,C) will draw a strong advantage

to defectors, given the relationb/c = 1/5, which in the end causesxn ≈ 0. Results for other games can be

understood in a similar way.

4 Discussion and conclusion

Let us now summarize our main findings. We have shown that selection rate plays a crucial role in de-

termining the fate of cooperation, by studying how evolutionary dynamics in a Moran setting depends on

the number of times the game is played between selection events. We have seen that even in a game as

simple as Harmony, where cooperating is the only rational outcome, rapid selection leads to the success of

defectors. We have observed similar behavior in other examples such as the Snowdrift and the Stag-Hunt

games. In binary games about cooperation situations (including Prisoner’s Dilemma), we have found that

rapid selection rates generally lead to the promotion of defectors. In other contexts the interpretation of the

results would be different (such as a choice of the risk-dominant coordination option in the Stag-Hunt game)

but the effect of the selection rate will undoubtedly be there. It is important to stress that the results are fully
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analytic, involve no approximation, and apply to both finite and infinite populations.

Although in this paper we have worked only in the framework of binary games, we believe that our main

claim, namely that different time scales for interaction and selection can modify the outcome of evolution, is

relevant to evolutionary games in general. Consider, for instance, the Ultimatum game (Güth, Schmittberger & Schwarze,

1982; Fehr & Fischbacher, 2003), which is one of the most frequently used games in theoretical and exper-

imental studies of cooperation. This game is much more complex than the previous binary games, as it

asymmetrical, i.e. each individual of the pair of interacting players has a role, and there is a large number of

strategies, not just two. In the Ultimatum game, under conditions of anonymity, two players are shown a sum

of money. One of the players, the “proposer”, is asked to offer an amount of this sum to the other, the “re-

sponder”. The proposer can make only one offer, which the responder can accept or reject. If the offer is ac-

cepted, the money is shared accordingly (the proposer receives the rest of the money); if rejected, both play-

ers gain nothing. Since the game is played only once (no repeated interactions) and anonymously (no repu-

tation gain), a self-interested responder will accept any amount of money offered whereas a self-interested

proposer will offer the minimum possible amount which will be accepted. This is precisely the outcome pre-

dicted by the replicator dynamics in a well-mixed population: the final population will consist only of fully

rational agents which offer the smallest possible amount and accept any amount (Page & Nowak, 2002). On

the contrary, relaxing the assumption of a well-mixed population in favor of a dynamics that allows a faster

selection rate changes this result absolutely. Proceeding similarly to the binary games of the previous sec-

tion, pairs of players are randomly selected to interact, in series ofs rounds between reproduction-selection

events. Exhaustive simulations of different versions of the game with this kind of dynamics have shown

that fair split becomes then the dominant strategy (Sánchez & Cuesta, 2005). An analytical study of this

problem that confirms the simulation results is under way (Rodrı́guez, Cuesta & Sánchez, 2006).

Finally, the most important implication of our results is that, in studies about the emergence of coopera-

tion, the rate of selection is an extremely influential parameter and very often leads to non-trivial, unexpected



10

outcomes. Of course, the scope of this result is not limited to cooperation among humans, as cooperative

phenomena have been reported for many other species including bacteria (Griffin, West & Buckling, 2004).

In fact, the research reported here stresses the importance of selection rates for evolutionary game theory, for

all the situations it models (not only cooperation) and for evolutionary theory in general (Hendry & Kinnison,

1999; Hendry et al., 2000; Yoshida et al., 2003).
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A Exact analytical results

In Moran dynamics, at each time step an individual is chosen for reproduction proportional to its fitness,

and one identical offspring is produced that replaces another randomly chosen individual. In a population

of N individuals wheren are C strategists (cooperators) andN − n are D strategists (defectors), we have

a Markov process with a tridiagonal transition matrix (a birth-death process (Karlin & Taylor, 1975)) given

by

Pn,n+1 =
N − n

N

〈

WC
n

WC
n + WD

n

〉

, (2)

Pn,n−1 =
n

N

〈

WD
n

WC
n + WD

n

〉

, (3)

andPn,n = 1 − Pn,n+1 − Pn,n−1, whereW α
n is the fitness earned by cooperators (α = C) or defectors

(α = D) afters games, and〈·〉 denotes the average over realizations of the process. The dependence of the

calculation on the selection rate, i.e., ons, enters only in these two quantities.

The solution to this birth-death process is obtained in a standard manner (Karlin & Taylor, 1975). Let

us denote byxn the probability of ending up in staten = N when starting off from staten. Then we have

xn = Pn,n+1xn+1 + Pn,nxn + Pn,n−1xn−1 (4)

with boundary conditionsx0 = 0, xN = 1. The solution to this equation is given by

xn =
Qn

QN

, Qn = 1 +
n−1
∑

j=1

j
∏

i=1

Pi,i−1

Pi,i+1

(n > 1), Q1 = 1. (5)

When the ratio of the transition probabilities can be written as

Pn,n−1

Pn,n+1

=
αn + β

α(n + 1) + γ
, α 6= 0, (6)

equation (5) has the closed form

Qn =
γ

γ − β

[

1 −

(

n + (β/α)

n

)(

n + (γ/α)

n

)

−1
]

, (7)
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where the generalized binomial coefficient is defined as
(

x
n

)

= x(x − 1) · · · (x − n + 1)/n!.

For the extreme cases = 1 there are two possible outcomes of the variableWC
n /(WC

n + WD
n ), namely

2a/2a, with probability n(n − 1)/N(N − 1) (that of pairing two Cs), andb/(b + c), with probability

2n(N − n)/N(N − 1) (that of pairing a C and a D). Thus, we have

〈

WC
n

WC
n + WD

n

〉

=
n

N(N − 1)

[

c − b

c + b
n +

2b

c + b
N − 1

]

. (8)

Using a similar reasoning forWD
n /(WC

n + WD
n ) we end up with

Pn,n−1

Pn,n+1

=
(c − b)n + (c + b)N − c − b

(c − b)n + 2bN − c − b
, (9)

which has the form (6). Notice that ifb < c thenPn,n+1 < Pn,n−1 regardless the values ofa andd.

In the opposite limits → ∞ every player plays with every other an infinite number of times, so

lim
s→∞

〈

W α
n

WC
n + WD

n

〉

=
W α

n

WC
n + WD

n

, α = C, D, (10)

whereW α
n denotes the payoff ofα strategists when every player plays with every other once. Thus, in this

case

Pn,n−1

Pn,n+1

=
(c − d)n + d(N − 1)

(a − b)n + bN − a
, (11)

which has the form (6) only whena + d = c + b.

For other values ofs, WC
n andWD

n can be computed through a combinatorial enumeration of all possible

pairings, and the resulting exact expression (too cumbersome to be included here) can then be evaluated

numerically.



13

Acknowledgments We acknowledge financial support from Ministerio de Educación y Ciencia of Spain

through grants BFM2003-07749-C05-01, FIS2004-01001 and NAN2004-09087-C03-03 (AS), BFM2003-

0180 (JAC), the Thematic Network FIS2004-22008-E and the Action FIS2004-22783-E. Support from the

Comunidad de Madrid Programme for Research Groups at Universidad Carlos III and from the European

Science Foundation through the COST Action “Physics of Risk” is also acknowledged.



14

Figure 1 Probabilityxn of ending up with all cooperators starting fromn cooperators, for different values

of s, in the Harmony game. a) For the smallest values ofs, full cooperation is only reached if almost all

agents are initially cooperators. Values ofs of the order of 10 show a behavior much more favorable to

cooperators. In this plot, the population size isN = 100. b) Taking a population ofN = 1000, we observe

that the range of values ofs for which defectors are selected does not depend on the population size, only the

shape of the curves does. Parameter choices are: Number of games between selection events,s, as indicated

in the plots; payoffs for the Harmony game,a = 11, b = 2, c = 10, d = 1. The dashed line corresponds to

a probability to reach full cooperation equal to the initial fraction of cooperators and is shown for reference.
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Figure 2 Same as Fig. 1, for the Stag-Hunt game. The probabilityxn of ending up with all cooperators

when starting fromn cooperators, is very low ifs is small, and ass increases it tends to a quasi-symmetric

distribution around1/2. Parameter choices are: Population,N = 100; number of games between selection

events,s, as indicated in the plot; payoffs for the Stag-Hunt game,a = 6, b = 1, c = 5, d = 2.
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Figure 3 Same as Fig. 1, for the Snowdrift game. The probabilityxn of ending up with all cooperators

starting fromn cooperators is almost independent ofn, except for very small or very large values. Small

s values lead once again to selection of defectors, whereas cooperators prevail more often ass increases.

Parameter choices are: Population,N = 100; number of games between selection events,s, as indicated in

the plot; payoffs for the Snowdrift game,a = 1, b = 0.35, c = 1.65, d = 0.
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Figure 4 Same as Fig. 1, for the Prisoner’s Dilemma, but only the rightmost part of then axis is shown

(smallestn values have a negligible chance to give rise to cooperation). In this game, small values ofs lead

to an even larger possibility of defection. Parameter choices are: Population,N = 100; number of games

between selection events,s, as indicated in the plot; payoffs for the Prisoner’s Dilemma,a = 1, b = 0,

c = 1.2, d = 0.1.
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