182 research outputs found

    L'émergence en création, ou, L'anti-héroïsme du créateur

    Get PDF
    Ce mémoire-création questionne le concept d'émergence en création. Il s'agit d'une recherche qualitative qui s'appuie sur le processus d'une pièce chorégraphique : CHAIR. Construit sur le principe du circuit-fermé (une caméra est intégrée à une poupée dont les images sont transmises en direct), ce solo s'est élaboré grâce à la perméabilité des pratiques et des matériaux. M'appuyant sur des concepts deleuziens (l'actuel et le virtuel, les zones d'indéterminations et le devenir notamment) et sur la philosophie chinoise (telle qu'étudiée par François Jullien) je mets en perspective la notion de décentralisation du créateur. Approfondissant les matériaux qui ont permis de construire CHAIR, je mets en perspective le fait que chaque matière contient ses propres singularités et que chacune de ses singularités fait émerger l'œuvre. Construit en deux volets, ce présent mémoire décrit tout d'abord le processus de création de manière chronologique. Et questionne ensuite, par l'entrecroisement des concepts, la notion d'émergence, qui va de pair avec la notion d'entre-deux. Cet entrecroisement de concept se fera sous la forme d'un dialogue entre les principaux théoriciens et moi-même. Sans apporter aucune réponse, j'entre dans une fente, je m'aventure dans l'inconnu afin de pousser une réflexion conceptuelle. Le lecteur sera invité à se perdre dans des méandres réflexifs qui finalement m'amènent, comme chercheuse, à considérer le dédoublement du même comme une faille permettant l'émergence « d'entre-images » : des images non visible, ou pas encore visible, des images de l'inconscient, reconstruites par le spectateur.\ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : création, processus, émergence danse contemporaine, vidéo, circuit fermé,\ud Gilles Deleuze, François Jullien, philosophie oriental

    Analysis of Multicore CPU and GPU toward Parallelization of Total Focusing Method ultrasound reconstruction

    Get PDF
    International audienceUltrasonic imaging and reconstruction tools are commonly used to detect, identify and measure defects in different mechanical parts. Due to the complexity of the underlying physics, and due to the ever growing quantity of acquired data, computation time is becoming a limitation to the optimal inspection of a mechanical part. This article presents the performances of several implementations of a computational heavy algorithm, named Total Focusing Method, on both Graphics Processing Units (GPU) and General Purpose Processors (GPP). The scope of this study is narrowed to planar parts tested in immersion for defects. Using algorithmic simplifications and architectural optimizations, the algorithm has been drastically accelerated resulting in memory-bound implementations. On GPU, high performances can be achieved by profiting from GPU long memory transactions and from hand managed memory. Whereas on GPP, computations cost are overrun by memory access resulting in less efficient performances compared to the computing capabilities available. The following study constitutes the first step toward analyzing the target algorithm for diverse hardware in the non-destructive testing environment

    Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression

    Get PDF
    Antimicrobial factors are efficient defense components of the innate immunity, playing a crucial role in the intestinal homeostasis and protection against pathogens. In this study, we report that upon infection of polarized human intestinal cells in vitro, virulent Shigella flexneri suppress transcription of several genes encoding antimicrobial cationic peptides, particularly the human β-defensin hBD-3, which we show to be especially active against S. flexneri. This is an example of targeted survival strategy. We also identify the MxiE bacterial regulator, which controls a regulon encompassing a set of virulence plasmid-encoded effectors injected into host cells and regulating innate signaling, as being responsible for this dedicated regulatory process. In vivo, in a model of human intestinal xenotransplant, we confirm at the transcriptional and translational level, the presence of a dedicated MxiE-dependent system allowing S. flexneri to suppress expression of antimicrobial cationic peptides and promoting its deeper progression toward intestinal crypts. We demonstrate that this system is also able to down-regulate additional innate immunity genes, such as the chemokine CCL20 gene, leading to compromised recruitment of dendritic cells to the lamina propria of infected tissues. Thus, S. flexneri has developed a dedicated strategy to weaken the innate immunity to manage its survival and colonization ability in the intestine

    Insight into biodiversity of the recently rearranged genus Dickeya

    Get PDF
    The genus Dickeya includes plant pathogenic bacteria attacking a wide range of crops and ornamentals as well as a few environmental isolates from water. Defined on the basis of six species in 2005, this genus now includes 12 recognized species. Despite the description of several new species in recent years, the diversity of the genus Dickeya is not yet fully explored. Many strains have been analyzed for species causing diseases on economically important crops, such as for the potato pathogens D. dianthicola and D. solani. In contrast, only a few strains have been characterized for species of environmental origin or isolated from plants in understudied countries. To gain insights in the Dickeya diversity, recent extensive analyzes were performed on environmental isolates and poorly characterized strains from old collections. Phylogenetic and phenotypic analyzes led to the reclassification of D. paradisiaca (containing strains from tropical or subtropical regions) in the new genus, Musicola, the identification of three water species D. aquatica, D. lacustris and D. undicola, the description of a new species D. poaceaphila including Australian strains isolated from grasses, and the characterization of the new species D. oryzae and D. parazeae, resulting from the subdivision of the species D. zeae. Traits distinguishing each new species were identified from genomic and phenotypic comparisons. The high heterogeneity observed in some species, notably for D. zeae, indicates that additional species still need to be defined. The objective of this study was to clarify the present taxonomy of the genus Dickeya and to reassign the correct species to several Dickeya strains isolated before the current classification

    Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates.

    Get PDF
    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut

    Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism

    Get PDF
    Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn’s lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures

    Analysis of the Plant bos1 Mutant Highlights Necrosis as an Efficient Defence Mechanism during D. dadantii/Arabidospis thaliana Interaction

    Get PDF
    Dickeya dadantii is a broad host range phytopathogenic bacterium provoking soft rot disease on many plants including Arabidopsis. We showed that, after D. dadantii infection, the expression of the Arabidopsis BOS1 gene was specifically induced by the production of the bacterial PelB/C pectinases able to degrade pectin. This prompted us to analyze the interaction between the bos1 mutant and D. dadantii. The phenotype of the infected bos1 mutant is complex. Indeed, maceration symptoms occurred more rapidly in the bos1 mutant than in the wild type parent but at a later stage of infection, a necrosis developed around the inoculation site that provoked a halt in the progression of the maceration. This necrosis became systemic and spread throughout the whole plant, a phenotype reminiscent of that observed in some lesion mimic mutants. In accordance with the progression of maceration symptoms, bacterial population began to grow more rapidly in the bos1 mutant than in the wild type plant but, when necrosis appeared in the bos1 mutant, a reduction in bacterial population was observed. From the plant side, this complex interaction between D. dadantii and its host includes an early plant defence response that comprises reactive oxygen species (ROS) production accompanied by the reinforcement of the plant cell wall by protein cross-linking. At later timepoints, another plant defence is raised by the death of the plant cells surrounding the inoculation site. This plant cell death appears to constitute an efficient defence mechanism induced by D. dadantii during Arabidopsis infection
    corecore