
Analysis of Multicore CPU and GPU toward

Parallelization of Total Focusing Method ultrasound

reconstruction

Jason Lambert, Antoine Pédron, Guillaume Gens, Franck Bimbard, Lionel

Lacassagne, Ekaterina Iakovleva

To cite this version:

Jason Lambert, Antoine Pédron, Guillaume Gens, Franck Bimbard, Lionel Lacassagne, et
al.. Analysis of Multicore CPU and GPU toward Parallelization of Total Focusing Method
ultrasound reconstruction. DASIP 2012 - Conference on Design and Architectures for Signal
and Image Processing, Oct 2012, Karlsruhe, Germany. IEEE, Design and Architectures for
Signal and Image Processing (DASIP), 2012 Conference on. <hal-01093274>

HAL Id: hal-01093274

https://hal.inria.fr/hal-01093274

Submitted on 12 Jan 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52678802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01093274

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ANALYSIS OF MULTICORE CPU AND GPU TOWARD PARALLELIZATION OF TOTAL
FOCUSING METHOD ULTRASOUND RECONSTRUCTION

Jason Lambert1, Antoine Pédron1, Guillaume Gens2, Franck Bimbard2,
Lionel Lacassagne2 and Ekaterina Iakovleva1

[1] CEA, LIST, F-91191 Gif-sur-Yvette, France
[2] Institut d’Electronique Fondamentale, UMR 8622, Université Paris-Sud 11, F-91405 Orsay, France

ABSTRACT

Ultrasonic imaging and reconstruction tools are com-
monly used to detect, identify and measure defects in different
mechanical parts. Due to the complexity of the underlying
physics, and due to the evergrowing quantity of acquired
data, computation time is becoming a limitation to the opti-
mal inspection of a mechanical part. This article presents the
performances of several implementations of a computatio-
nal heavy algorithm, named Total Focusing Method, on both
Graphics Processing Units (GPU) and General Purpose Pro-
cessors (GPP). The scope of this study is narrowed to planar
parts tested in immersion for defects.

Using algorithmic simplifications and architectural opti-
mizations, the algorithm has been drastically accelerated re-
sulting in memory-bound implementations. On GPU, high
performances can be achieved by profiting from GPU long
memory transactions and from hand managed memory. Whe-
reas on GPP, computations cost are overrun by memory ac-
cess resulting in less efficient performances compared to the
computing capabilities available.

The following study constitutes the first step toward ana-
lyzing the target algorithm for diverse hardware in the non-
destructive testing environment.

Index Terms— non-destructive testing, ultrasonic re-
construction, parallelization, general purpose processors, gra-
phic processing units, total focusing method

1. INTRODUCTION

Non Destructive Testing (NDT) regroups numerous tech-
niques that are designed to evaluate the properties of a me-
chanical part without causing damage. Multiple industries are
concerned, such as: aeronautics, petrochemical, transports,
energy, etc. Because security is always more important, the
analysis needs are growing. The control tools have evolved
drastically, so as the data storage allowing the acquisition of
large volumes of data. Linear ultrasonic transducers are one
of the evolutions of the ultrasound transducers and allow the
NDT expert to use the Full Matrix Capture (FMC) to get

the maximum information to be post-processed. Reconstruc-
tions from the FMC acquisition are usually very expensive
and consequently avoided in real situations because of the
computation time.

Until a decade ago, the hardware evolution - on clock
speed, execution optimization and caches - was enough to
compensate the volume growth, but the frequency wall hit
by hardware manufacturers has set a new deal. Up to now,
parallel chips have grown, reaching nowadays a point of ma-
turity. General Purpose computations on GPU (GPGPU) is
obviously the domain that is in spotlight, with numerous ar-
ticles in the literature showing great accelerations with GPU
compared to sequential GPP implementations. But multicore
GPP have also evolved, increasing the SIMD possibilities and
enhancing cache memory, more particularly because of the
need to link memory for multicore systems.

The CIVA software platform has been developing the To-
tal Focusing Method (TFM) within its ultrasonic reconstruc-
tion module [1]. This approach has been firstly introduced in
ultrasonic NDT field with the well-known SAFT algorithm
[2] [3]. This article presents a study of the parallelization of
TFM on GPU and multicore SIMD GPP. Parallelization of
such method has already been realized on GPU by Romero
et al. [4]. However, this work focuses on immersion transdu-
cers, implying more complex computations and significantly
longer execution time than the contact transducer version of
the algorithm, as described by Stepinski et al. [5].

This paper is organized as follows. The TFM algorithm
is presented in section 2 with the computation specificities
added by immersion transducers. Then, GPP and GPU im-
plementations are detailed in section 3 and 4 respectively.
Benchmarks performed on GPP and GPU architectures using
datasets from real control cases are analyzed in section 5. Fi-
nally, the last section concludes the paper and discusses future
works.

2. TOTAL FOCUSING METHOD

This section deals with the presentation of the Total Focu-
sing Method for contact and immersion transducers. Subsec-

tion 2.1 presents the core process and subsection 2.2 the com-
putation differences between contact and immersion transdu-
cers. Then, the algorithm is shown in subsection 2.3.

2.1. Method principle

Consider a linear ultrasonic array of Nt transceivers in
which each transceiver is successively used as the transmitter,
while all other transceivers are used as receivers. The data are
organized in a symmetric matrix that contains all the acquired
Nt×Nt signals. This acquisition process is called Full Matrix
Capture (FMC).

The TFM is a technique used to post-process the data from
FMC to produce a scalar image, I(P), of the inspected region,
where the array is focused in transmission and reception at
every point P in the image. The intensity of the TFM image
I(P) is given by:

I(P) =

Nt∑
i,j=1

Sij(Tip + Tjp) (1)

where Sij is the acquired temporal signal, Tip and Tjp are the
time delays relative to the point P for i’th and j’th transcei-
vers, respectively. Thus, the TFM algorithm can be summari-
zed as follows:

1. Discretization of the inspected region into a grid.

2. Calculation of I(P) given by equation 1 for each grid
point P .

2.2. Delay law computation

This subsection describes the computation of the time de-
lay Tip, i = 1 . . . N , for contact and immersion setups used
in NDT for ultrasonic inspection of solid components.

P(x,z)

(xi ,zi) (xj ,zj)

x water

solid

0

Transceiver i
as a transmitter

Transceiver j
as a receiver

Fig. 1. 2D-configuration representing TFM in contact mode

In contact mode, the ultrasonic transducer is directly cou-
pled to the surface of the mechanical part using a thin layer of
contact agent. This inspection setup is schematized in figure
1. Following to [6], the propagation time Tip is determined
by dividing the geometric distance from i’th transceiver to
the imaging point P by the velocity of sound c:

Tip =

√
(xi − x)2 + (zi − z)2

c
(2)

where (xi, zi) is the position of the i’th transceiver, x and z
are the coordinates of the imaging point P .

P(x,z)

(xi ,zi)

x

z

(xj ,zj)

water

solid Pi’(xi’,0)
0

Transceiver i
as a transmitter

Transceiver j
as a receiver

Fig. 2. 2D-configuration representing TFM in immersion
mode

In immersion mode, the transducer is separated from the
mechanical part by a coupling liquid medium, which is ge-
nerally water. For this inspection mode, propagation of ul-
trasonic waves in two media with different sound velocities
results in refraction at the interface. As is shown in figure 2,
ultrasound beam is refracted at the point P ′i (x

′
i, 0) at the pla-

nar liquid/solid interface given by z = 0. Analogously to the
previous case, the propagation time Tip can be expressed as
follows:

Tip =

√
(xi − x′i)

2 + z2i
c1

+

√
(x′i − x)2 + z2

c2
(3)

where c1 and c2 are the velocity of ultrasonic waves in liquid
and solid, respectively, (xi, zi) is the position of the i’th trans-
ceiver, (x′i, 0) is the positions of the refraction point P ′ and
(x, z) are the coordinates of the point P .

The x-coordinate of the refraction point P ′ can be deter-
mined using Snell’s law which leads, as detailed in [7], to the
following nonlinear equation:

xi − x′i
c1
√

(xi − x′i)
2 + z2i

=
x′i − x

c2
√

(x′i − x)2 + z2
(4)

The solution of the equation 4 can be approximated by
using some iterative methods in order to find the roots of the
associated polynomial of fourth degree.

2.3. TFM algorithm

This subsection describes the TFM algorithm accordin-
gly to the principle exposed in subsection 2.1. Supposing that
the algorithm produces the scalar image corresponding to a
rectangular region beginning at (xb, zb) (top left corner) and
ending at (xe, ze) (bottom right corner) with a linear ultraso-
nic array of Nt transceivers. For a scalar image with a resolu-
tion of K×L, the previous rectangular region is discretized in
K×L points Pi,j(xb+i.∆x, zb+j.∆z) where i ∈ [0,K[, j ∈
[0, L[, ∆x = (xe−xb)/(K−1) and ∆y = (ze−zb)/(L−1).

k = 0;

k < K

l = 0;

l < L

P = Pk,l;
I(P) = 0;

i = 0;

i < Nt

j = 0;

j < Nt

I(P)=I(P)+Si,j(TiP+TjP)
j++;

i++;

l++;

k++;

Start

End

k = 0;

k < K

l = 0;

l < L

P = Pk,l;
I(P) = 0;

i = 0;

i < Nt

j = 0;

j < N

I(P)=I(P)+Si,j(T(i)+T(j))
j++;

i++;

l++;

k++;

Start

End

i < Nt

T(i) = TiP;
i++;

i = 0;

Fig. 3. TFM: Classical algorithm

Thus, figure 3 presents the classical algorithm, where for a gi-
ven point P , each time delay TiP (i ∈ [0, Nt[) is computed
Nt + 1 times: once as transmitter and Nt times as receiver.

For a given point Pi,j and a given transceiver, the time
delay between them depends only on their positions which
do not change during the computation. Thus, this time delay
is the same whether the transceiver acts as a transmitter or
as a receiver. That is why, it is possible to say that there is a
symmetry regarding to the role of each transceiver. Then, the
previous algorithm can be optimized by computing each time
delay only once. As exposed in figure 4, for a given point P ,
the Nt time delays are all computed once and then are used to
produce the pixel I(P).

2.4. Numerical considerations

Iterative root finding methods refine over an initial guess
or approximation of one root of the studied polynomial. The
selected root finding method is Laguerre’s because of its capa-
city to always converge for any initial guess and with a cubical
rate of convergence for simple roots. For each root found, po-
lynomial deflation is applied using Horner’s Method, dividing
P (X) by (X − xroot) to reduce the polynomial degree.

Implementations of these methods imply an important
number of floating point operations. In preparation for future
implementation, computations accuracy and numerical sta-
bility of single-precision floating-point implementations of
those algorithms have been validated using both the Mathe-
matica software and the GNU MPFR library.

3. GPP IMPLEMENTATIONS

In this section is explained how the TFM algorithm (see
subsection 2.3) has been implemented on a GPP. First of all,
the subsections 3.1 and 3.2 respectively explains the principle

k = 0;

k < K

l = 0;

l < L

P = Pk,l;
I(P) = 0;

i = 0;

i < Nt

j = 0;

j < Nt

I(P)=I(P)+Si,j(TiP+TjP)
j++;

i++;

l++;

k++;

Start

End

k = 0;

k < K

l = 0;

l < L

P = Pk,l;
I(P) = 0;

i = 0;

i < Nt

j = 0;

j < N

I(P)=I(P)+Si,j(T(i)+T(j))
j++;

i++;

l++;

k++;

Start

End

i < Nt

T(i) = TiP;
i++;

i = 0;

Fig. 4. TFM: Algorithm using symmetries

of SIMD instructions and the principles of the OpenMP li-
brary. Then, in the subsection 3.3, the use of these two tech-
nologies is exposed in order to accelerate the TFM algorithm.

3.1. Principle of SIMD instructions

SIMD instructions currently work on 128-bit and 256-bit
vectors. Because of the length of the vectors, each SIMD ins-
truction is able to perform a given operation simultaneously
on multiple data [8] [9]. For example, if using 128-bit vec-
tors, a SIMD instruction can perform simultaneously four ad-
ditions on four single-precision floating point numbers (32-
bit).

Thus, SIMD instructions are useful for optimizing algo-
rithms but can only be used for regular computations. Among
other things, these instructions do not support test jumps but
if-then-else structure can be implemented through the use of
comparisons and selection (i.e. masking).

3.2. Principles of the OpenMP library

The OpenMP library is designed for shared-memory pa-
rallel programming.This library is useful to easily parallelize
existing codes without doing heavy modifications by crea-
ting as many threads as the number of GPP logical cores.
Each thread has its own stack in which its local variables are
located. Thus, any local variable is private and can be read
and/or written only by the thread to which it belongs. But
the OpenMP library also allows developers to share some va-
riables among the threads. They are located in a shared me-
mory and can be read and written by all threads.

3.3. TFM implementation with using SIMD instructions
and OpenMP library

In the particular case of the TFM algorithm, the OpenMP
library is used to parallelize the external loop. According to
this algorithm, the FMC containing all the acquired signals,
the output image and its position, the number Nt of transcei-
vers in the linear ultrasonic array must be shared among all
threads.

Other variables are private and can be read only by the
thread to which they are belonging. Then, the OpenMP library
automatically breaks the loop and creates threads to execute
its code among all the cores in the GPP.

Concerning SIMD instructions, 128-bit vectors are ac-
tually used (SSE2). Each vectors contains four simple-
precision reals. Thus, four time delays are computed simulta-
neously following the equations described in the subsection
2.2.

4. ADAPTATION TO THE GPU

This section deals with the specificities of the GPU archi-
tecture and the CUDA model. Subsection 4.1 concisely ex-
plores the CUDA model, then in subsection 4.2 the imple-
mentations of the TFM developed to benefits from a GPU
computational power are detailed.

4.1. GPU architecture considerations

NVIDIA released a new programming architecture in
2006 to ease GPGPU on its GPU. This architecture comes
with both a programming paradigm and a C-like interface
to program GPU. A CUDA task is called “kernel” and it is
represented by a C-like function which will be executed once
by all threads.

With CUDA, GPU are used as coprocessors to their host
systems. They dispose of their own memory, off-chip DRAM,
called global memory, which is slow to access memory (com-
paring to GPU frequency), but it is kept alive for the duration
of the application allowing communication between kernels
without back-and-forth data movement to the host. Further-
more, on recent GPU (Fermi architecture), access to global
memory can be made through L1 and L2 caches of 16 to
48KB and 768KB respectively.

GPU consist, too, of severals streaming multiprocessors
(SM, 16 on current high end cards). Each SM is composed of
multiple elements, whose numbers depend on hardware gene-
ration, for example :

– CUDA cores for integer and floating-point arithmetic
operations;

– Special Function Units for floating-point transcenden-
tals functions;

– one or two schedulers to manage threads.
Beside these computing elements, each SM disposes of :

– a rather small (16KB, up to 48KB on recent devices)
but fast shared memory on the SM, for exchanges bet-
ween its cores;

– a limited, per SM, set of registers divided between the
threads of a kernel at compile-time. If too many re-
gisters are required by a kernel, the compiler decides
which registers to “spill” to a portion of global memory
call local memory, this portion is exposed to the kernel
only by a per thread basis.

CUDA multiprocessors use the Single Instruction Mul-
tiple Thread (SIMT) architecture : each cycle, one instruction
is executed by all the cores of a single SM. Threads are grou-
ped into packs of 32 threads, called warps, to be scheduled by
each SM. A SM can host multiple warps up to its physical li-
mits, depending of the required configuration form the kernel.
This model is most efficient when each thread in a warp exe-
cutes the same instruction. In case of divergence, each branch
is consecutively executed by the warp, with threads follo-
wing the other branch doing nothing. Each thread disposes
of its own program counter and of its own registers. Thread
contexts of warps stay on the multiprocessor for the duration
of their execution enabling a cheap and fast hardware schedu-
ling of ready warps in spite of execution time and/or latency
of instructions.

To fit to this architecture, the CUDA model subdivides on
two, more coarse, levels than threads :

– It defines a block as a group of contiguous threads.All
the threads of a block are divided into warps.The
CUDA model imposes that all the warps of a block
will be executed by the same SM. This way, multiple
blocks may reside on a single SM and share its re-
sources. The shared memory allows the threads of a
block to communicate together.

– Finally, to organize these blocks, the model represents
blocks as a grid.

An important notion when designing parallel algorithms
is how sub-tasks can synchronize among themselves. CUDA
provides two ways to synchronizing threads : at block level
by establishing a barrier for all the threads in the block and
at grid level CUDA ensures the programmer that all the block
have been executed once a kernel finishes.

4.2. GPU Implementations

In this subsection, different steps leading toward refine-
ment of parallelization implementation of the TFM algorithm
on GPU are detailed : first the straigh forward implementa-
tion of the basic algorithm, then the implementation of the
algorithmical optimization using symmetries and last its ar-
chitectural optimization. In these implementations, computa-
tions are done using single precision floating point numbers,
as previously validated in subsection 2.4.

4.2.1. Basic implementation

The first implementation is a straight forward transposi-
tion of the computations from the sequential approach (see
figure 3).

Each block will be assigned to a single pixel of the image.
In a block, threads will consecutively compute two time de-
lays: the first one, from a transmitter to the physical point cor-
responding to the pixel and the second one, back from this
point to the receiver. Once the round-trip time delay is com-
puted by adding these two values, each thread will retrieve the
corresponding sample from the FMC matrix stored in global
memory and adds it to the pixel value. Common linear arrays
are composed of 64 to 128 transceivers, thus 1024 to 16384
couples of time delays will be computed. Because there are
more couples than threads in a block, threads may compute
influence of several couples for its pixel. Then, each couple
influence is added to the pixel value using an atomic opera-
tion to avoid conflicts within the block.

4.2.2. Symmetries on GPU

The second implementation, based on the symmetries ap-
proach shown in figure 4, is the result of the following algo-
rithmical optimization. With a linear array of Nt transceivers,
this approach reduces the computations from Nt × Nt com-
puted time delays to Nt. To increase performances over the
previous version, adaptations to the CUDA model should be
carried on. In this version, a block is still assigned to a single
pixel and each block needs enough shared memory to store
a time delay for each transceiver. By working simultaneously
on a whole pixel, computed time delay can be reutilized by
storing these values into shared memory.

This kernel will reconstruct the image in two steps :
– First, the threads will compute and then store into sha-

red memory the time delays between each transceiver
and the physical point corresponding to the pixel. Due
to the way threads are divided into warps, they have to
be synchronized for each pixel to be sure that all time
delays of a pixel are computed before combining them
to compute the influence of a couple of transceivers.

– After synchronizing with all the threads of the block,
each thread assembles the round-trip time delay of each
couple from shared memory, then retrieves the corres-
ponding sample from the FMC matrix in global me-
mory, and at last, adds its contribution to the pixel value
using an atomic operation.

4.2.3. Multiple Pixels per Block

The last implementation will use symmetries as seen on
the previous section and will aim to optimize access to the
samples in global memory. To optimize memory access on
CUDA devices, threads from the same warp should make coa-
lesced access to the global memory : aligned and sequential

access (the latter is no longer required on Fermi GPU). This
way, all the threads from a warp can access global memory
through a single memory transaction which is subsequently
stored into the cache (128-byte long on Fermi GPU).

Due to the nature of the simulated phenomenon, there is
no way to predict the distance from a time delay to the next
one before computing them. The underlying idea is to rely
on the quasi-continuous nature of ultrasound waves : for a
given couple of transmitter and receiver and for two physical
points that are close to each other, the time delay should be
close enough to allow the retrieval of more than one sample
by each memory transaction as illutrated in figure 5.

Emitter i

Samples for
receiver j-1

Samples for
receiver j

Samples for
receiver j+1

thread 3

thread 2thread 1

thread 0

One memory transaction
to retreive multiple samples

Fig. 5. Retreiving multiple samples by memory transaction
By enforcing spatial locality, this implementation is an ar-

chitectural optimization of the previous algorithm aimed at
producing a cache oblivious algorithm. Packs of Nwg pixels
will be assign to each block thus threads will be divided into
work groups of Nwg contiguous threads such that :

– no work group goes beyond the size of a warp;
– threads from each block are equally divided between

workgroup.
Block will be assigned to 2D regions of the target image,

each will work on Nwg pixels. Threads will work, as seen in
the previous implementation, in two steps. First, the threads
will compute and store into shared memory the time delay
between transceivers and physical points corresponding to the
processed zone. Then, after synchronizing on the block level,
work groups will be assigned to different couples of transcei-
vers. Inside a work group, threads will work simultaneously
on Nwg different pixels for a set couple of transceiver.

This whole transformation is done by using indexes so
the algorithm structure is essentially the same as the previous
implementation.

5. BENCHMARKS AND PERFORMANCES
ANALYSIS

This section will first outline the computational and the
memory access complexities of each presented algorithm in
subsection 5.1. Then benchmarking of the different algo-
rithms on two different hardware will be exposed in subsec-
tion 5.2.

5.1. Algorithm Complexity

In this subsection, the study will deal with a linear ultra-
sonic array composed of Nt transceivers and a reconstructed

image of Np pixels. In the TFM algorithm, the parameters
Nt and Np are crucial to evaluate the performances of the
algorithm.

Furthermore, both on GPU and GPPs, two parts of the
TFM algorithm are costly toward the performances :

– the number of access to the memory for reading the
samples and writing the pixels, as for example the
samples, are very large accessing to them is prone to
cache miss;

– the number of time delay computations.
Tables 1 and 2 present the global complexities of these two
parts accordingly to the parameters Nt and Np for the basic
algorithm (see figure 3) and its version using symmetries (see
figure 4):

Memory access Time delay
computations

Basic
O(N2

t ×Np)
O(N2

t ×Np)
With symmetries O(Nt ×Np)

Table 1. Complexities of GPP Implementations

Memory access Time delay
computations

Basic
O(N2

t ×Np)
O(N2

t ×Np)
With symmetries O(Nt ×Np)
Multiple pixels per block O(Nt ×Np)

Table 2. Complexities of GPU Implementations

As the highest complexity of the algorithm is O(N2
t ×Np)

both for memory access and for time delay computations, in
the subsection 5.2, the execution times are normalized accor-
dingly to this complexity.

5.2. Benchmarks

The following benchmarks were obtained on an Intel i7-
2600K GPP and one of the two GPU on a Nvidia GeForce
GTX 590, with the announced specifications shown at table
3. GGP implementations use SSE2 SIMD instructions.

Intel i7-2600K GTX 590 (1 GPU)
FLoating point Opera-
tions Per Second

112 GFLOPS 1244 GFLOPS

Memory bandwidth 21 GB/s 164 GB/s

Table 3. Architecture specifications

As seen in the previous section, performances are closely
tied to the parameters Nt (the number of transceivers) and
Np (the number of reconstructed pixels). Thus, this paragraph
shows the execution times observed on both GPP and GPU for
two scenarios in which only one of the previous parameters
varies. These scenarios are detailed in tables 4 and 5.

Np 80×24 160×48 240×72 320×96 400×120
Nt 128

Table 4. Scenario with Nt constant
Np 400×120=48000
Nt 16 32 48 64 80 96 112 128

Table 5. Scenario with Np constant

5.2.1. GPU results

First of all, the figure 6 shows the results obtained in the
case of the scenario described by the table 4 for each one of
the three GPU implementations: basic implementation (see
paragraph 4.2.1), implementation with symmetries (see pa-
ragraph 4.2.2) and implementation with multiple pixels per
block (see paragraph 4.2.3). These results show that, for each
one of these implementations, once the image size is suffi-
ciently important, execution time becomes constant. For a
small image size, launching a CUDA kernel implies a little
overhead that computations cannot balance. Contrary to ba-
sic and symmetries implementations, multiple pixel per block
is still a bit declining which indicates that the benefits of the
method is not at the limits: as the resolution of the recons-
truction image increases, more and more contiguous pixels
benefit from the same samples.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1920 7680 17280 30720 48000

10
-9

 s
ec

on
ds

 p
er

 (
N
E2

 *
 N
p)

Number of pixels

1/10th of gpu_basic
gpu_symmetries

gpu_mppb

Fig. 6. Execution time of GPU implementations for a sensors
of a fixed number of transceivers (128 transceivers)

Then, the figure 7 presents the results obtained in the case
of the scenario described by the table 5. The inefficiency of
the GPU for very small problem size is noteworthy. Beside,
these peaks of inefficiency are more pronounced for the sym-
metries implementation rather than for the basic one. This
highlights the heavy cost of synchronizing threads of a block
on GPU between time delay computation and samples fet-
ching. Once the number of transceivers is enough to balance
synchronization and kernel launch, execution times become
again constant. For implementations with symmetries and
with multiple pixels per block, the complexity in terms of
time delay computations is equal to O(Nt × Np). Knowing
that, as said in paragraph 5.1, the execution times have been
normalized accordingly to the complexity O(N2

t ×Np). It is
possible to say that these implementations are memory-bound

(i.e. memory access are more expensive than time delay com-
putations). Otherwise, for the two previous implementations,
execution time would be decreasing.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 16 32 48 64 80 96 112 128

10
-9

 s
ec

on
ds

 p
er

 (
N
E2

 *
 N
p)

Number of elements

1/10th of gpu_basic
gpu_symmetries

gpu_mppb

Fig. 7. Execution time of GPU implementations for a fixed
image size (400× 120 pixels)

5.2.2. GPP results

Concerning GPP implementations, as explained at the pa-
ragraph 3.3, two methods have been used in order to optimize
TFM algorithm: multithreading with the OpenMP libray and
SIMD instructions. Thus, in order to be able to analyze the
efficiency of these two methods, they have been applied se-
parately and together on the basic TFM algorithm (see figure
3) and its version using symmetries (see figure 4). Thus, eight
versions of the TFM algorithm have been benchmarked which
are detailed in table 6.

Version OpenMP SIMD
gpp {basic/symmetries}

gpp {basic/symmetries} omp X
gpp {basic/symmetries} simd X

gpp {basic/symmetries} omp simd X X

Table 6. GPP implementations

The figure 8 presents the performances of GPP implemen-
tations in the case of the scenario described by the table 4. As
with GPU implementations, normalized execution times are
constant once the image size is sufficiently important. Concer-
ning the basic TFM algorithm implementations, as expected,
the fastest implementation is the one using both multithrea-
ding and SIMD instructions. However, regarding the imple-
mentations using symmetries, the fastest implementation is
not the one using both multithreading and SIMD instructions
but the one using only multithreading. In fact, if using sym-
metries, the cost of time delay computation is reduced. This
implyes more cache pressure on sample loads from the mul-
tiple threads when using the OpenMP library. This pressure
increases again by using SIMD instructions and leads to a
minimization of cache usage and finally to an inefficient im-
plementation.

 0

 10

 20

 30

 40

 50

 60

 1920 7680 17280 30720 48000

10
-9

 s
ec

on
ds

 p
er

 (
N
E2

 *
 N
p)

Number of pixels

1/10th of gpu_basic
gpu_symmetries

1/10th of gpu_basic_omp
gpu_symmetries_omp

gpu_basic_simd
gpu_symmetries_simd
gpu_basic_omp_simd

gpu_symmetries_omp_simd

Fig. 8. Execution time of GPP implementations for a linear
arrays of a fixed number of transceivers (128 transceivers)

The figure 9 details the performances of GPP implemen-
tations in the case of the scenario described by the table 5.
The previous results are again observed in this figure. Once
the number of transceivers reaches 48, execution times be-
come constant. This figure shows that the GPP implemen-
tations using symmetries are also memory bound. The best
implementation is still the symmetries algorithm using only
multithreading. This indicates that even with slower computa-
tions (without using SIMD instructions), this implementation
maximizes memory utilization.

 0

 10

 20

 30

 40

 50

 60

 16 32 48 64 80 96 112 128

10
-9

 s
ec

on
ds

 p
er

 (
N
E2

 *
 N
p)

Number of elements

1/10th of gpu_basic
gpu_symmetries

1/10th of gpu_basic_omp
gpu_symmetries_omp

gpu_basic_simd
gpu_symmetries_simd
gpu_basic_omp_simd

gpu_symmetries_omp_simd

Fig. 9. Execution time of GPP implementations for a fixed
image size (400× 120 pixels)

5.2.3. Benchmarks analysis

Knowing that, in real applications, the TFM algorithm is
never used to produce small images or with too small linear
ultrasonic arrays, in this paragraph:

– In the case of the scenario described by the table 4, the
scope is narrowed to image sizes greater or equal than
240× 72.

– In the case of the scenario described by the table 5,
the scope is narrowed to linear ultrasonic arrays with
at least 48 transceivers.

The table 7 presents the average normalized execution
times on all the resulting cases for each GPP and GPU im-

Implementation ANET Speedup
gpp basic 4.98E-01 1

gpp basic simd 2.79E-02 17.9
gpp basic omp 1.35E-01 3.7

gpp basic omp simd 7.80E-03 63.9
gpp symmetries 1.59E-02 31.4

gpp symmetries simd 1.10E-02 45.7
gpp symmetries omp 4.36E-03 114.4

gpp symmetries omp simd 8.64E-03 57.7
gpu basic 6.81E-03 73.2

gpu symmetries 6.87E-04 726.1
gpu mppb 1.97E-04 2535.3

Table 7. Synthesis of ANET (average normalized execution
times (10−9 seconds per (N2

t ×Np))) and speedups

plementations. In this table, all implementations are compa-
red, in term of speedup, to the basic TFM algorithm on GPP
(gpp basic implementation) which serves as reference.

The table 7 shows that, concerning the basic implemen-
tation of TFM algorithm, gpu basic and gpp basic omp simd
obtain similar speedups (respectively 73.2 and 63.9). Kno-
wing the specifications of each architecture (table 3), it is pos-
sible to say that GPP has less computational power but a more
efficient memory architecture than GPU.

Concerning the versions using symmetries, the fastest
GPP implementation is gpp symmetries omp and obtains a
speedup equal to 114.4 whereas the GPU implementation
gpu symmetries obtains a speedup equal to 726.1. As ex-
plained in the paragraph 5.2.2, gpp symmetries omp simd
is less efficient because of the limitations of GPP memory
caches. On this point, the GPU benefits of a shared memory
to manually manage local data and share it across threads.

This becomes particularly visible on the GPU implemen-
tation gpu mppb which still use the bases of the symmetries
algorithm and which optimizes its memory access to benefit
both from this fast shared memory and from caches available
on the GPU to access samples. This allows GPU to obtain a
speedup equal to 2535.3.

6. CONCLUSIONS AND FUTURE WORK

The study presented in this article is the first step toward
offering an efficient parallelized implementation of the TFM
algorithm on workstations.

This article have shown that GPU and GPP can both be ef-
fective at accelerating the Total Focusing Method. Compared
to the GPP scalar execution time, the multithreading allowed
a×114.4 acceleration, whereas GPU reaches a×2535.3 spee-
dup. It is noteworthy that the fastest GPP implementation is
not the one using SIMD instructions. Due to SIMDization,
computations become insignificant in comparison to memory
access, resulting in too much pressure on the memory cache.

Inspection of planar interfaces has shown to be restric-
ting, thus work is on progress to optimize implementations for

more complex surfaces (from cylindrical to torical, and with
combinations of different interfaces). These surfaces will re-
quire heavier computations to determine the delay laws, thus
a shift from memory-bound to compute-bound behavior may
be observed.

This way, it will be possible to draw more conclusions on
the computing capacities of both architectures and the next
step of this study will work out the optimal boundaries for
implementing on each of them.

7. ACKNOWLEDGEMENTS

This work has been partly supported by the french Agence
Nationale de la Recherche OPARUS project (ANR-10-COSI-
010-01).

8. REFERENCES

[1] “CIVA : State of the art simulation software for Non Des-
tructive Testing,” http://www-civa.cea.fr/.

[2] Seydel J., “Ultrasonic synthetic-aperture focusing tech-
niques in ndt,” Research Techniques in Nondestructive
Testing, vol. 6, pp. 1–47, 1982.

[3] I. Trots Y. Tasinkevych, A. Nowicki, “Element directi-
vity influence in the synthetic focusing algorithm for ul-
trasound imaging,” Proceedings of the LVII Open Semi-
nar on Acoustics, pp. 197–200, 2010.

[4] D. Romero-Laorden, O.Martnez-Graullera, C.J.Martn-
Arguedas, M.Prez, and L.G.Ullate, “Paralelización de los
procesos de conformación de haz para la implementación
del total focusing method,” in CAEND Comunicaciones
congresos, 12 Congreso Espaol de Ensayos No Destruc-
tivos, 2011.

[5] Tadeusz Stepinski and Fredrik Lingvall, “Synthetic aper-
ture focusing techniques for ultrasonic imaging of solid
objects,” in 8th European Conference on Synthetic Aper-
ture Radar, Aachen, Tyskland, 2010.

[6] Caroline Holmes, Bruce W. Drinkwater, and Paul D.
Wilcox, “Post-processing of the full matrix of ultraso-
nic transmitreceive array data for non-destructive evalua-
tion,” NDT and E International, vol. 38, no. 8, pp. 701 –
711, 2005.

[7] Matthias Jobst and George D. Connolly, “Demonstration
of the application of the total focusing method to the ins-
pection of steel welds,” in 10th European Conference on
Non-Destructive Testing, 2010.

[8] R. Cypher and J.L.C. Sanz, “Simd architectures and
algorithms for image processing and computer vision,”
Acoustics, Speech and Signal Processing, IEEE Transac-
tions on, vol. (37) pp 2158-2174, 1989.

[9] D. Etiemble and L. Lacassagne, “Introducing image pro-
cessing and simd computations with fpga soft-cores and
customized instructions,” Workshop on Reconfigurable
Computing Education, vol. 6 pages, 2006.

