117 research outputs found

    From the Heart of The Ghoul: C and N Abundances in the Corona of Algol B

    Full text link
    Chandra Low Energy Transmission Grating Spectrograph observations of Algol have been used to determine the abundances of C and N in the secondary star for the first time. The analysis was performed relative to similar observations of an adopted "standard" star HR 1099. It is demonstrated that HR 1099 and Algol are coronal twins in many respects and that their X-ray spectra are very similar in nearly all details, except for the observed strengths of C and N lines. The H-like transitions of C and N in the coronae of Algol and HR 1099 demonstrate that the surface abundances of Algol B have been strongly modified by CN-processing, as shown earlier by Schmitt & Ness (2002). It is found that N is enhanced in Algol B by a factor of 3 compared to HR 1099. No C lines are detected in the Algol spectrum, indicating a C depletion relative to HR 1099 by a factor of 10 or more. These C and N abundances indicate that Algol B must have lost at least half of its initial mass, and are consistent with predictions of evolutionary models that include non-conservative mass transfer and angular momentum loss through magnetic activity. Little or no dredge-up of material subjected to CN-processing has occurred on the subgiant component of HR 1099. It is concluded that Fe is very likely depleted in the coronae of both Algol and HR 1099 relative to their photospheres by 0.5 dex, and C, N and O by 0.3 dex. Instead, Ne is enhanced by up to 0.5 dex.Comment: 17 pages, 4 figures, ApJ accepte

    Detailed Analysis of Nearby Bulgelike Dwarf Stars III. Alpha and Heavy-element abundances

    Full text link
    The present sample of nearby bulgelike dwarf stars has kinematics and metallicities characteristic of a probable inner disk or bulge origin. Ages derived by using isochrones give 10-11 Gyr for these stars and metallicities are in the range -0.80< [Fe/H]< +0.40. We calculate stellar parameters from spectroscopic data, and chemical abundances of Mg, Si, Ca, Ti, La, Ba, Y, Zr and Eu are derived by using spectrum synthesis. We found that [alpha-elements/Fe] show different patterns depending on the element. Si, Ca and Ti-to-iron ratios decline smoothly for increasing metallicities, and follow essentially the disk pattern. O and Mg, products of massive supernovae, and also the r-process element Eu, are overabundant relative to disk stars, showing a steeper decline for metallicities [Fe/H] > -0.3 dex. [s-elements/Fe] roughly track the solar values with no apparent trend with metallicity for [Fe/H] < 0, showing subsolar values for the metal rich stars. Both kinematical and chemical properties of the bulgelike stars indicate a distinct identity of this population when compared to disk stars.Comment: 21 pages, 9 figures, to appear in Ap

    Structure and Evolution of Nearby Stars with Planets. I. Short-Period Systems

    Full text link
    Using the Yale stellar evolution code, we have calculated theoretical models for nearby stars with planetary-mass companions in short-period nearly circular orbits: 51 Pegasi, Tau Bootis, Upsilon Andromedae, Rho Cancri, and Rho Coronae Borealis. We present tables listing key stellar parameters such as mass, radius, age, and size of the convective envelope as a function of the observable parameters (luminosity, effective temperature, and metallicity), as well as the unknown helium fraction. For each star we construct best models based on recently published spectroscopic data and the present understanding of galactic chemical evolution. We discuss our results in the context of planet formation theory, and, in particular, tidal dissipation effects and stellar metallicity enhancements.Comment: 48 pages including 13 tables and 5 figures, to appear in Ap

    High matter density peaks from UVES observations of QSO pairs: correlation properties and chemical abundances

    Full text link
    We study the transverse clustering properties of high matter density peaks as traced by high column density absorption systems (either Lyman limit systems characterized by N(HI)> 2 x 10^{17} cm^{-2} or CIV systems with W_{r}> 0.5 A) at redshifts between 2 and 3 with UVES spectra of two QSO pairs (UM680/UM681 at 56 arcsec angular separation and Q2344+1228/Q2343+1232 at 5 arcmin angular separation) and a QSO triplet (Q2139-4433/Q2139-4434/Q2138-4427 at 1, 7 and 8 arcmin angular separation). We find 3 damped Ly-alpha systems (N(HI)> 2 x 10^{20} cm^{-2}): 2 coinciding with strong metal systems in the nearby line of sight and 1 matching the emission redshift of the paired QSO; plus 7 Lyman limit systems: 4 forming two matching couples and 3 without a corresponding metal system within ~3000 km/s in the coupled line of sight. In summary, we detect five out of ten matching systems within 1000 km/s, indicating a highly significant overdensity of strong absorption systems over separation lengths from ~1 to 8 h^{-1} Mpc. The observed coincidences could arise in gas due to starburst-driven superwinds associated with a quasar or a galaxy, or gas belonging to large scale structures like filaments or sheets. We also determine chemical abundance ratios for three damped Ly-alpha systems. In particular, for the damped system at z ~ 2.53788 in the spectrum of Q2344+1228, new estimates of the ratios O/Fe, C/Fe are obtained: [C/Fe]<0.06, [O/Fe]<0.2. They indicate that O and C are not over-solar in this system.Comment: 14 pages, 15 figures, accepted for publication in A&

    Combined effects of tidal and rotational distortions on the equilibrium configuration of low-mass, pre-main sequence stars

    Full text link
    In close binary systems, rotation and tidal forces of the component stars deform each other and destroy their spherical symmetry. We present new models for low-mass, pre-main sequence stars that include the combined distortion effects of tidal and rotational forces on the equilibrium configuration of stars. We investigate the effects of interaction between tides and rotation on the stellar structure and evolution. The Kippenhahn & Thomas (1970) approximation, along with the Clairaut-Legendre expansion for the gravitational potential of a self-gravitating body, is used to take the distortion effects into account. We obtained values of internal structure constants for low-mass, pre-main sequence stars from stellar evolutionary models that consider the combined effects of rotation and tidal forces due to a companion star. We also derived a new expression for the rotational inertia of a tidally and rotationally distorted star. Our distorted models were successfully used to analyze the eclipsing binary system EK Cep, reproducing the stellar radii, effective temperature ratio, lithium depletion, rotational velocities, and the apsidal motion rate in the age interval of 15.5-16.7 Myr. In the low-mass range, the assumption that harmonics greater than j=2 can be neglected seems not to be fully justified, although it is widely used when analyzing the apsidal motion of binary systems. The non-standard evolutionary tracks are cooler than the standard ones, mainly for low-mass stars. Distorted models predict more mass-concentrated stars at the zero-age main-sequence than standard models

    The Origin of Carbon-Enhancement and Initial Mass Function of Extremely Metal-Poor Stars in the Galactic Halo

    Get PDF
    It is known that the carbon-enhanced, extremely metal-poor (CEMP) stars constitute a substantial proportion in the extremely metal-poor (EMP) stars of the Galactic Halo, by far larger than CH stars in Population II stars. We investigate their origin with taking into account an additional evolutionary path to the surface carbon-enrichment, triggered by hydrogen engulfment by the helium flash convection, in EMP stars of [Fe/H]2.5[Fe/H] \lesssim -2.5. This process is distinct from the third dredge-up operating in more metal-rich stars and also in EMP stars. In binary systems of EMP stars, the secondary stars become CEMP stars through mass transfer from the primary stars of low and intermediate masses, which have developed the surface carbon-enhancement. Our binary scenario can predict the variations in the abundances not only for carbon but also for nitrogen and s-process elements and reasonably explain the observed properties such as the stellar distributions with respect to the carbon abundances, the binary periods, and the evolutionary stages. Furthermore, from the observed frequencies of CEMP stars with and without s-process element enhancement, we demonstrate that the initial mass function of EMP stars need to give the mean mass ~10\msun under the reasonable assumptions on the distributions of orbital separations and mass ratio of binary components. This also indicates that the currently observed EMP stars were exclusively born as the secondary members of binaries, making up 10\sim 10% remnants of EMP binary systems of mass ~10^8\msun in total; in addition to CEMP stars with white dwarf companions, a significant fraction of them have experienced supernova explosions of their companions. We discuss the implications of the present results in relation to the formation of Galactic halo.Comment: 66 pages, 12 figures, 2 tables Accepted for publication in Ap

    New Precision Orbits of Bright Double-Lined Spectroscopic Binaries. I: RR Lyncis, 12 Bootis, and HR 6169

    Full text link
    Radial velocities from the 2.1 m telescope at McDonald Observatory supplemented with radial velocities from the coude' feed telescope at KPNO provide new precise orbits for the double-lined spectroscopic binaries RR Lyn (A3/A8/A6), 12 Boo (F8IV), and HR 6169 (A2V). We derive orbital dimensions and minimum masses with accuracies of 0.06 to 0.9 %. The three systems, which have V magnitudes of 5.54, 4.83, and 6.42, respectively, are all sufficiently bright that they are easily within the grasp of modern optical interferometers and so afford the prospect, when our spectroscopic observations are complemented by interferometric observations, of fully-determined orbits, precise masses, and distances. In the case of RR Lyn, which is also a detached eclipsing binary with a well-determined orbital inclination, we are able to determine the semimajor axis of the relative orbit, a = 29.32 +/- 0.04 Rsun, primary and secondary radii of 2.57 +/- 0.02 Rsun and 1.59 +/- 0.03 Rsun, respectively; and primary and secondary masses of 1.927 +/- 0.008 Msun and 1.507 +/- 0.004 Msun, respectively. Comparison of our new systemic velocity determination, gamma = -12.03 +/- 0.04 km/s, with an earlier one, gamma = -11.61 +/- 0.30 km/s, shows no evidence of any change in the systemic velocity in the 40 years separating the two measurements, a null result that neither confirms nor contradicts the presence of the low-mass third component proposed by Khaliullin & Khaliullina (2002). Our spectroscopic orbit of 12 Boo is more precise that that of Boden et al. (2005), but confirms their results about this system. Our analysis of HR 6169 has produced a major improvement in its orbital elements. The minimum masses of the primary and secondary are 2.20 +/- 0.01 and 1.64 +/- 0.02 Msun, respectively.Comment: To appear in the May A

    Accurate masses and radii of normal stars: modern results and applications

    Get PDF
    This paper presents and discusses a critical compilation of accurate, fundamental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and alpha Centauri) that satisfy our criterion that the mass and radius of both stars be known to 3% or better. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. We discuss the use of this information for testing models of stellar evolution. The amount and quality of the data also allow us to analyse the tidal evolution of the systems in considerable depth, testing prescriptions of rotational synchronisation and orbital circularisation in greater detail than possible before. The new data also enable us to derive empirical calibrations of M and R for single (post-) main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff), log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively. Excellent agreement is found with independent determinations for host stars of transiting extrasolar planets, and good agreement with determinations of M and R from stellar models as constrained by trigonometric parallaxes and spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23 interferometric binaries with masses known to better than 3%, but without fundamental radius determinations (except alpha Aur). We discuss the prospects for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and Astrophysics Review. Ascii versions of the tables will appear in the online version of the articl

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36
    corecore