104 research outputs found

    Differences in functional brain organization during gesture recognition between autistic and neurotypical individuals

    Get PDF
    Persons with and without autism process sensory information differently. Differences in sensory processing are directly relevant to social functioning and communicative abilities, which are known to be hampered in persons with autism. We collected functional magnetic resonance imaging (fMRI) data from 25 autistic individuals and 25 neurotypical individuals while they performed a silent gesture recognition task. We exploited brain network topology, a holistic quantification of how networks within the brain are organized to provide new insights into how visual communicative signals are processed in autistic and neurotypical individuals. Performing graph theoretical analysis, we calculated two network properties of the action observation network: local efficiency, as a measure of network segregation, and global efficiency, as a measure of network integration. We found that persons with autism and neurotypical persons differ in how the action observation network is organized. Persons with autism utilize a more clustered, local-processing-oriented network configuration (i.e., higher local efficiency), rather than the more integrative network organization seen in neurotypicals (i.e., higher global efficiency). These results shed new light on the complex interplay between social and sensory processing in autism

    Differences in the production and perception of communicative kinematics in autism

    Get PDF
    In human communication, social intentions and meaning are often revealed in the way we move. In this study, we investigate the flexibility of human communication in terms of kinematic modulation in a clinical population, namely, autistic individuals. The aim of this study was twofold: to assess (a) whether communicatively relevant kinematic features of gestures differ between autistic and neurotypical individuals, and (b) if autistic individuals use communicative kinematic modulation to support gesture recognition. We tested autistic and neurotypical individuals on a silent gesture production task and a gesture comprehension task. We measured movement during the gesture production task using a Kinect motion tracking device in order to determine if autistic individuals differed from neurotypical individuals in their gesture kinematics. For the gesture comprehension task, we assessed whether autistic individuals used communicatively relevant kinematic cues to support recognition. This was done by using stick-light figures as stimuli and testing for a correlation between the kinematics of these videos and recognition performance. We found that (a) silent gestures produced by autistic and neurotypical individuals differ in communicatively relevant kinematic features, such as the number of meaningful holds between movements, and (b) while autistic individuals are overall unimpaired at recognizing gestures, they processed repetition and complexity, measured as the amount of submovements perceived, differently than neurotypicals do. These findings highlight how subtle aspects of neurotypical behavior can be experienced differently by autistic individuals. They further demonstrate the relationship between movement kinematics and social interaction in high-functioning autistic individuals

    The CABB dataset: A multimodal corpus of communicative interactions for behavioural and neural analyses

    Get PDF
    We present a dataset of behavioural and fMRI observations acquired in the context of humans involved in multimodal referential communication. The dataset contains audio/video and motion-tracking recordings of face-to-face, task-based communicative interactions in Dutch, as well as behavioural and neural correlates of participants’ representations of dialogue referents. Seventy-one pairs of unacquainted participants performed two interleaved interactional tasks in which they described and located 16 novel geometrical objects (i.e., Fribbles) yielding spontaneous interactions of about one hour. We share high-quality video (from three cameras), audio (from head-mounted microphones), and motion-tracking (Kinect) data, as well as speech transcripts of the interactions. Before and after engaging in the face-to-face communicative interactions, participants’ individual representations of the 16 Fribbles were estimated. Behaviourally, participants provided a written description (one to three words) for each Fribble and positioned them along 29 independent conceptual dimensions (e.g., rounded, human, audible). Neurally, fMRI signal evoked by each Fribble was measured during a one-back working-memory task. To enable functional hyperalignment across participants, the dataset also includes fMRI measurements obtained during visual presentation of eight animated movies (35 minutes total). We present analyses for the various types of data demonstrating their quality and consistency with earlier research. Besides high-resolution multimodal interactional data, this dataset includes different correlates of communicative referents, obtained before and after face-to-face dialogue, allowing for novel investigations into the relation between communicative behaviours and the representational space shared by communicators. This unique combination of data can be used for research in neuroscience, psychology, linguistics, and beyond

    Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis)

    Get PDF
    OBJECTIVE: To identify genetic causes of COACH syndrome BACKGROUND: COACH syndrome is a rare autosomal recessive disorder characterised by Cerebellar vermis hypoplasia, Oligophrenia (developmental delay/mental retardation), Ataxia, Coloboma, and Hepatic fibrosis. The vermis hypoplasia falls in a spectrum of mid-hindbrain malformation called the molar tooth sign (MTS), making COACH a Joubert syndrome related disorder (JSRD). METHODS: In a cohort of 251 families with JSRD, 26 subjects in 23 families met criteria for COACH syndrome, defined as JSRD plus clinically apparent liver disease. Diagnostic criteria for JSRD were clinical findings (intellectual impairment, hypotonia, ataxia) plus supportive brain imaging findings (MTS or cerebellar vermis hypoplasia). MKS3/TMEM67 was sequenced in all subjects for whom DNA was available. In COACH subjects without MKS3 mutations, CC2D2A, RPGRIP1L and CEP290 were also sequenced. RESUlTS: 19/23 families (83%) with COACH syndrome carried MKS3 mutations, compared to 2/209 (1%) with JSRD but no liver disease. Two other families with COACH carried CC2D2A mutations, one family carried RPGRIP1L mutations, and one lacked mutations in MKS3, CC2D2A, RPGRIP1L and CEP290. Liver biopsies from three subjects, each with mutations in one of the three genes, revealed changes within the congenital hepatic fibrosis/ductal plate malformation spectrum. In JSRD with and without liver disease, MKS3 mutations account for 21/232 families (9%). CONCLUSIONS: Mutations in MKS3 are responsible for the majority of COACH syndrome, with minor contributions from CC2D2A and RPGRIP1L; therefore, MKS3 should be the first gene tested in patients with JSRD plus liver disease and/or coloboma, followed by CC2D2A and RPGRIP1L

    Selected hematologic and biochemical measurements in African HIV-infected and uninfected pregnant women and their infants: the HIV Prevention Trials Network 024 protocol

    Get PDF
    Reference values for hematological and biochemical assays in pregnant women and in newborn infants are based primarily on Caucasian populations. Normative data are limited for populations in sub-Saharan Africa, especially comparing women with and without HIV infection, and comparing infants with and without HIV infection or HIV exposure. We determined HIV status and selected hematological and biochemical measurements in women at 20-24 weeks and at 36 weeks gestation, and in infants at birth and 4-6 weeks of age. All were recruited within a randomized clinical trial of antibiotics to prevent chorioamnionitis-associated mother-to-child transmission of HIV (HPTN024). We report nearly complete laboratory data on 2,292 HIV-infected and 367 HIV-uninfected pregnant African women who were representative of the public clinics from which the women were recruited. Nearly all the HIV-infected mothers received nevirapine prophylaxis at the time of labor, as did their infants after birth (always within 72 hours of birth, but typically within just a few hours at the four study sites in Malawi (2 sites), Tanzania, and Zambia. HIV-infected pregnant women had lower red blood cell counts, hemoglobin, hematocrit, and white blood cell counts than HIV-uninfected women. Platelet and monocyte counts were higher among HIV-infected women at both time points. At the 4-6-week visit, HIV-infected infants had lower hemoglobin, hematocrit and white blood cell counts than uninfected infants. Platelet counts were lower in HIV-infected infants than HIV-uninfected infants, both at birth and at 4-6 weeks of age. At 4-6 weeks, HIV-infected infants had higher alanine aminotransferase measures than uninfected infants. Normative data in pregnant African women and their newborn infants are needed to guide the large-scale HIV care and treatment programs being scaled up throughout the continent. These laboratory measures will help interpret clinical data and assist in patient monitoring in a sub-Saharan Africa context

    Neurophysiological evidence for rapid processing of verbal and gestural information in understanding communicative actions

    Get PDF
    During everyday social interaction, gestures are a fundamental part of human communication. The communicative pragmatic role of hand gestures and their interaction with spoken language has been documented at the earliest stage of language development, in which two types of indexical gestures are most prominent: the pointing gesture for directing attention to objects and the give-me gesture for making requests. Here we study, in adult human participants, the neurophysiological signatures of gestural-linguistic acts of communicating the pragmatic intentions of naming and requesting by simultaneously presenting written words and gestures. Already at ~150 ms, brain responses diverged between naming and request actions expressed by word-gesture combination, whereas the same gestures presented in isolation elicited their earliest neurophysiological dissociations significantly later (at ~210 ms). There was an early enhancement of request-evoked brain activity as compared with naming, which was due to sources in the frontocentral cortex, consistent with access to action knowledge in request understanding. In addition, an enhanced N400-like response indicated late semantic integration of gesture-language interaction. The present study demonstrates that word-gesture combinations used to express communicative pragmatic intentions speed up the brain correlates of comprehension processes – compared with gesture-only understanding – thereby calling into question current serial linguistic models viewing pragmatic function decoding at the end of a language comprehension cascade. Instead, information about the social-interactive role of communicative acts is processed instantaneously
    • 

    corecore