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Abstract

Persons with and without autism process sensory information differently. Differences in sensory processing are directly relevant to
social functioning and communicative abilities, which are known to be hampered in persons with autism. We collected functional
magnetic resonance imaging data from 25 autistic individuals and 25 neurotypical individuals while they performed a silent gesture
recognition task. We exploited brain network topology, a holistic quantification of how networks within the brain are organized to
provide new insights into how visual communicative signals are processed in autistic and neurotypical individuals. Performing graph
theoretical analysis, we calculated two network properties of the action observation network: ‘local efficiency’, as ameasure of network
segregation, and ‘global efficiency’, as a measure of network integration. We found that persons with autism and neurotypical persons
differ in how the action observation network is organized. Persons with autism utilize a more clustered, local-processing-oriented
network configuration (i.e. higher local efficiency) rather than the more integrative network organization seen in neurotypicals (i.e.
higher global efficiency). These results shed new light on the complex interplay between social and sensory processing in autism.
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Introduction
Persons with autism spectrum conditions (ASC) process sensory
information differently than those without autism (Keehn et al.,
2013; Van de Cruys et al., 2014; Lawson et al., 2017). For exam-
ple, autistic individuals are often more focused on details (Bölte
et al., 2007) but have more difficulty filtering relevant informa-
tion from noise (Van de Cruys et al., 2017). These perceptual
differences may relate to how prior knowledge and current sen-
sory information are used, integrated (Pellicano and Burr, 2012)
and updated (Van de Cruys et al., 2014; Sapey-Triomphe et al.,
2020) or to the engagement and disengagement of attention in
response to perceptual cues (Keehn et al., 2013). Differences in
sensory processing are directly relevant to social functioning and
communicative abilities in ASC. For example, atypical perception
of communicative manual gestures, which are a key aspect of
social interaction (Kelly et al., 2010; Özyürek, 2014), could lead
to miscommunications. Some evidence for this link comes from

the finding that gesture recognition is strongly correlated with

‘social perception’ (i.e. what a person is doing, based on into-

nation, posture, gesture, etc.; Walther et al., 2015). This study

addresses the complex interplay between social and sensory

processing in autism, focusing on processing of communicative

gestures.
Recognition of communicative gestures provides an interest-

ing point of investigation for autistic and neurotypical individuals

because gestures are a crucial aspect of human communication

(Özyürek, 2014; Holler and Levinson, 2019). Even in the absence
of speech or interaction, gesture recognition is directly relevant
for social functioning in that recognizing what another person is
doing (i.e. whether an actual action or an action or object icon-
ically depicted via gesture) provides the grounding to be able
to effectively interact with that person (Knoblich and Sebanz,
2006). Autistic individuals may not be impaired in actually rec-
ognizing the meaning of iconic gestures (i.e. those that visually
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depict an action or object; Silverman et al., 2010; Trujillo et al.,
2021) or the referent of deictic gestures (i.e. pointing gestures;
Aldaqre et al., 2016; von der Lühe et al., 2016), but processing
may still differ between the two groups. In our previous study
(Trujillo et al., 2021), we found that autistic individuals recognized
iconic gestures with similar accuracy as neurotypical individu-
als. However, autistic individuals differed in how they interpreted
communicative cues in the kinematics of these gestures. This
specifically related to communicatively motivated exaggerations
of the kinematics, such as an increase in complexity (e.g. depict-
ing placing a nail, then depicting the ‘hammering’ movement)
effectively adding more depictive movements to an action or
repetitiveness (e.g. repeating a ‘hammering’ movement) of the
gestures. This kinematic exaggeration hindered autistic individ-
uals’ recognition performance rather than supporting recogni-
tion as it did in neurotypicals (Trujillo et al., 2021). This finding
highlights how perceptual processing differences may be quite
subtle.

Besides differences in the processing of gesture kinematics,
other studies have suggested that the successful processing of
iconic and deictic gestures (i.e. pointing) imposes a heavier cog-
nitive processing load than in neurotypicals (Silverman et al.,
2010; Aldaqre et al., 2016). In other words, gesture recognition
may recruit more, or different, cognitive resources in autistic
compared to neurotypical persons. This may reflect a different
organization of information processing or it may reflect a sim-
ilar organization but generally greater mental effort in autistic
individuals. While these findings relate to more complex action
or gesture recognition, similar results can be seen in the recog-
nition of biological motion from highly reduced stimuli, such as
point-light displays (single points of light in the location of human
joints, such as wrists and shoulders, against a black background
(Johansson, 1973)). While some studies have reported impaired
recognition of biologicalmotion in autistic individuals (Blake et al.,
2003; Hsiung et al., 2019), others have shown that there is little
or no impairment (Herrington et al., 2007; von der Lühe et al.,
2016). A recent meta-analysis suggests that any deficits may be
particularly related to recognizing higher-order information, such
as emotions, from biological motion alone (Todorova et al., 2019).
Evenwhen behavioral performance does not differ between autis-
tic and neurotypical individuals, patterns of brain activity and
connectivity when processing biological motion do seem to dif-
fer (Herrington et al., 2007; McKay et al., 2012; Alaerts et al.,
2017). These studies demonstrate that autistic persons can be
unimpaired on a particular perceptual task in terms of accuracy
while the processing of the perceptual information may still be
qualitatively different, and how the brain processes this percep-
tual information may also differ. Understanding the mechanisms
underlying these differenceswill require us to investigatewhether
and how these are related to the organization of information
processing in the brain.

Differences in how neurodiverse populations process (socially
relevant) perceptual information will likely be reflected in how
the brain responds to such information. Brain networks, and in
particular the topological organization of such networks, may
provide insights into such perceptual differences. This is because
functional networks (i.e. the network of brain regions that are par-
ticularly active and exchanging information during a particular
task) can be dynamically and flexibly organized in response to the
current environment or task (Bassett et al., 2006).

Studies assessing functional networks in autistic and neu-
rotypical individuals have already provided evidence for dif-
ferences between the two groups. One replicated finding is

that autistic individuals have decreased long-range connectivity
between different areas or networks (O’Reilly et al., 2017; Hong
et al., 2019). However, other studies have shown increased connec-
tivity ‘between’ networks, with decreased connectivity ‘within’
networks (Fishman et al., 2014, 2015). Importantly, such differ-
ences in connectivity in autistic individuals are not only in general
network organization but also occur in specific, task-relevant
networks, such as the action observation network (Alaerts et al.,
2015, 2017; Delbruck et al., 2019). The action observation network
(AON), which includes the inferior frontal gyrus (IFG), posterior
superior temporal gyrus (pSTG), bilateral precentral gyrus (PCG),
intraparietal sulcus (IPS) and precuneus (Caspers et al., 2010; Ari-
oli and Canessa, 2019), is especially relevant as it is activated
during the observation of human actions, including manual ges-
tures (Villarreal et al., 2008; Trujillo et al., 2020). Differences
within AON connectivity are also correlated with autism symp-
tom severity (Delbruck et al., 2019), suggesting the relevance of
these network differences in social functioning. Crucially, how-
ever, all of these findings, with the exception of that of Alaerts
et al. (2017), come from studies of resting-state connectivity, when
participants are scanned without any particular task. Resting-
state studies can provide an interesting view of how the brain
organizes into stable patterns, but it cannot tell us how these
functional networks organize during active engagement.

Investigating functional network organization during task
engagement can provide us with insights into how task-related
information is being processed and how this may differ between
groups. As discussed above, network differences such as changes
in long-range connections may be relevant in understanding how
autistic individuals cognitively process information. Graph the-
oretical analysis provides a useful tool for understanding the
architecture, or topology, of these self-organizing functional net-
works because it does not focus on activation differences in a
specific brain area, or on particular connections, but rather on
the structure of a critical network as a whole (Bullmore and
Sporns, 2009; Park and Friston, 2013). This structure is relevant
for cognitive processing as the balance between segregation (cap-
tured as local efficiency) and long-range integration (captured
as global efficiency) is reflective of performance on several cog-
nitive tasks (Gießing et al., 2013; Cohen and D’Esposito, 2016;
Farahani et al., 2019). These network features, therefore, corre-
spond well with the previously discussed results in autism, where
long-range connectivity differences may be related to graph theo-
retical global efficiency, and more local changes may be reflected
in local efficiency.

In order to better understand how autistic and neurotypical
individuals differ in terms of the processing of communicative sig-
nals, the current study, therefore, assesses differences between
autistic and neurotypical individuals in network topology during
the recognition of silent iconic gestures. By utilizing stick-light
versions of these gestures, we are able to ensure that the only
information available is related to movement itself and not to the
actor or further visual context. In a previous study, we reported
the behavioral results from this task, where we found that autis-
tic individuals were able to correctly recognize iconic gestures
depicted by stick-light figures with similar accuracy as neurotyp-
ical individuals but differed in how they interpreted subtle differ-
ences in the kinematics of these gestures, such as the complexity
or repetitiveness of the gestures (i.e. the number of submove-
ments constituting a particular gesture). In order to understand
such perceptual differences at the level of information process-
ing in the brain, the current study compares the ‘local efficiency’
and ‘global efficiency’ of the task-related network in autistic and
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neurotypical individuals. These measures characterize the seg-
regation (higher short-range but lower long-range connectivity)
and integration (higher long-range but lower short-range con-
nectivity) of the task-related network. We focus our analyses on
the AON, as this network is strongly implicated in the process-
ing of (communicative) movements, such as hand gestures, and
has previously shown to differ in terms of its internal network
connectivity in autistic and neurotypical individuals. Focusing
on this AON also provides a theory-driven constraint and thus
improves the interpretability of the findings, while the network-
based analysis overall allows us to more holistically characterize
how this functional network organizes in response to this task
rather than focusing on specific regions or connections. In sum,
our study aims to provide new insights into how task-related
brain networks organize in response to viewing and recogniz-
ing communicative gestures in both autistic and neurotypical
individuals.

Methods
Participants
Twenty-five autistic individuals (15 female; 22 right-handed) and
25 neurotypical individuals (14 female; 21 right-handed) partic-
ipated in the study. From the autistic group, three participants
did not complete the neuroimaging part of the study due to
stress or inability to lie in the scanner, and two participants were
excluded postscan due to excessive headmotion (see ‘Preprocess-
ing’ section below). This left 20 participants in the autistic group
and 24 neurotypical participants who were included in analyses.
Autistic participants were recruited via the Psychiatry Depart-
ment of the Radboud University Medical Centre (Radboudumc).
Patients were recruited via two routes. In the first route, patients
were contacted by their psychiatrist at the Radboudumcwith gen-
eral, global information about the study and asked if they agree
to being approached by researchers. In the second route, a mes-
sage was posted in a private, organization-specific social network,
where Radboudumc psychiatrists have message board-style con-
tact with past patients. All participants received a clinical diag-
nosis of autism spectrum disorder (ASD), also referred to as ASC,
from a Radboudumc psychiatrist according to the criteria defined
in the Diagnostic and Statistical Manual of Mental Disorders, Fifth
addition. Diagnosis was confirmed by the psychiatrist using a
structured diagnostic interview for autism (Nederlands Interview
ten behoeve van Diagnostiek Autismespectrumstoornis bij Volwasse-
nen [Dutch Interview for the Diagnosis of Autism Spectrum Disorder
in Adults]). Participants between the ages of 18 and 35years were
recruited. Potential participants were excluded if they had a his-
tory of any other (neuro-)psychiatric disorders, brain surgery or
brain trauma or used antipsychotic medication. The neurotypi-
cal control group was recruited via the Radboud University SONA
system, which allows for presignup screening of several partici-
pant characteristics. By starting the recruitment of the ASC group
first, we were able to prescreen our control group in an attempt to
match the age and gender between the two groups. We addition-
ally collected data on education and handedness for further group
matching. The study was approved by a local ethics committee
(CMO Arnhem-Nijmegen) and all procedures were performed in
accordance with the Declaration of Helsinki (World Medical Asso-
ciation, 2013). Participants took part in a two-part study, involving
gesture production and gesture comprehension. For a full descrip-
tion of both behavioral paradigms, see Trujillo et al. (2021). The
power analyses used to calculate sample size are described in
Appendix 1.

Sample size and power analysis
Sample size was determined based on a priori power analyses
both for the analyses described here and for the behavioral mea-
sures described in Trujillo et al. (2021). For the current study, we
utilized a previous study from our lab (Trujillo et al., 2020) that
similarly used stick-light figure stimuli of silent gestures during
task-based functional magnetic resonance imaging (fMRI). Using
the fmripower (fmripower.org; Mumford and Nichols, 2008) tool-
box for Matlab, we calculated the necessary sample size to detect
major AON areas, which were a priori of interest. For 80% power
and a Type I error rate of 0.05, we required 25 participants. This
sample size estimation was aimed at detecting the main effects
of interest within-group as a sufficiently comparable dataset for
performing a power analysis for between-group effects was not
available. However, the current sample size estimation ensures
that our design was able to elicit significant activation in themain
areas of interest, on which we will perform further analyses. For
the behavioral study, power analysis indicated that we needed 20
participants in each group. In order to ensure sufficient power for
the entire two-part study, we, therefore, set our desired sample
size at 25 per group.

Demographics and neuropsychological measures
We collected self-report information on age (years) and hand-
edness and asked participants to fill out questionnaires for the
autism quotient (AQ; Baron-Cohen et al., 2001; Ketelaars et al.,
2008), the Actions and Feelings Questionnaire (AFQ; Williams
et al., 2016) and level of education (based on the highest level of
completed education as defined by Verhage (Verhage, 1964) and
updated by Hendriks (Hendriks et al., 2014)). The AQ was col-
lected in order to quantify autism symptom severity. The Dutch
version of the AFQ (van der Meer et al., 2022), which quan-
tifies the relation between motor cognition and empathy, was
collected as a secondary measure to determine if it is a valid pre-
dictor of participants’ gesture recognition performance. Besides
questionnaires, we also carried out the Dutch short form of the
Wechsler Abbreviated Intelligence Test (WAIS-II; Wechsler, 2011),
as well as the Purdue Pegboard Test (Tiffin and Asher, 1948). These
were carried out in order to obtain an estimate of the intelli-
gence quotient (IQ) and general motor coordination that could be
used to ensure that the two groups are matched in these general
domains.

In order to check group matching, we used equivalence testing
following the two one-sided t-test (TOST) approach (Lakens et al.,
2018). We set the smallest effect size of interest (SESOI) for age
up to 5, as age differences of less than 5 likely still fall within the
same general age category. We set the SESOI for IQ to 8 follow-
ing the suggestion of Lakens et al. (2018) to use half a standard
deviation (s.d.), with an s.d. of 16 being taken from a large sam-
ple of Dutch adults performing the WAIS (van Ool et al., 2018).
SESOI was set to 3 for the Purdue pegboard, as this is the minimal
detectable change in this test (Lee et al., 2013). We used Welch’s
t-tests to statistically determine whether the two groups differed
in the clinical scores where we expected them to differ (i.e. AFQ
and AQ).

For the demographics that we expected to be matched
(i.e. age, IQ and motor coordination), we found that autis-
tic and neurotypical individuals differed significantly in age
(t(45.27)=3.786, P<0.001) and the two groups did not differ sig-
nificantly in IQ (t(34.38)=−0.210, P=0.835), although we also
did not find evidence for the groups being statistically equiva-
lent (t(34.38)=1.414, P=0.083. Purdue Assembly (motor coor-
dination) scores were statistically equivalent (t(47.26)= −4.957,
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Table 1. Overview of demographic information

ASC NT

Mean s.d. Mean s.d.

Age (years)a 24.08 3.72 28.67 4.78
Gender (female) 10 %50 14 %58
Handedness (right-
handed)

18 %90 19 %79

Purdue Assembly (motor
coordination)

9.24 1.55 9.92 1.75

IQ (estimate) 113.03 10.61 112.00 22.24
AFQa 24.05 5.47 32.45 4.97
AQa 30.63 7.25 14.95 6.24

ASC=autism spectrum condition; NT=neurotypical; IQ= intelligence
quotient; AFQ=Actions and Feelings Questionnaire; AQ=autism quotient.
aSignificantly different.

P<0.001. For the clinical measures, we found significantly
higher AFQ scores in neurotypicals compared to autistic indi-
viduals (t(36.19)=5.01, P<0.001), and we found higher AQ
scores in the autistic individuals compared to the neurotypicals
(t(35.572)=7.22, P<0.001). Demographic information is provided
in Table 1.

Tasks and data acquisition
fMRI data acquisition
Anatomical and task-related MRI images were acquired on a 3T
Siemens Magnetom Skyra MR scanner with a 32-channel head
coil at the Donders Institute for Brain, Cognition and Behaviour
in Nijmegen, the Netherlands. Structural images (1 × 1×1 mm3)
were acquired using a T1-weighted magnetization prepared rapid
gradient echo sequence with time repetition (TR)=2300ms,
time echo (TE)=3.03ms, flip angle=8◦ and field of view
(FOV)=256×256×192 mm3. The behavioral task (described
below) was carried out by participants while T2*-weighted, multi-
band 8, dual-echo echo-planar imaging (EPI) BOLD-fMRI images
were acquired using an interleaved ascending slice acquisition
sequence (slices=63, TR=730ms, TE=37.8ms, flip angle=90◦,
voxel size=3×3×3, slice gap=0.34mm, FOV=212×212mm2).
We additionally collected a B0-field map sequence using two
magnitude images and one phase difference.

fMRI Preprocessing
We performed slice-time correction on functional images and
then generated voxel displacement maps (VDM) based on the
B0-field maps. These VDMs were subsequently used to unwarp
the functional images. Functional and structural images were
realigned and coregistered, with spatial normalization with the
Montreal Neurological Institute template and spatial smoothing
using a 3-mm full width at half-maximum kernel. After pre-
processing, we checked motion parameters in the task-related
acquisitions to ensure that no participants moved more than 3◦

in rotation or 3mm in translation across the functional scanning
session. This led to two autistic participants and one neurotypical
participant being excluded (as noted above in the ‘Participants’
subsection). Given an equivalence bound of 0.102 (i.e. half the
s.d. of pooled motion parameters), a TOST check indicated that
the difference in motion parameters did not differ statistically
between groups (t(46.98)=−0.105, P=0.917), although not statis-
tically equivalent (t(46.98)=1.644, P = 0.053). All analyses were
performed in MATLAB (MathWorks, Natick, MA) using SPM12.

Physical set-up
Participants were positioned in the supine position in the MRI
scanner with an adjustable mirror attached to the head coil.
Through the mirror, participants were able to see a projection
screen outside the scanner. Participants were given an MRI-
compatible response box, which they operated using the index
finger of their right hand to press a button on the right and the
index finger of their left hand to press a button on the left. But-
ton locations corresponded to the two response options given on
the screen. The resolution of the projector was 1024×768 pix-
els, with a projection size of 454×340mm and a 755mm distance
between the participant and the mirror. The video size on the
projection was adjusted such that the stick figures in the videos
were seen at a size of 60×60 pixels. This ensured that the entire
figure fell on the fovea, reducing eye movements during image
acquisition. Stimuli were presented using an in-house-developed
PsychoPy (Peirce et al., 2019) script.

Stimuli
For our video stimuli, we utilized recordings from (Trujillo et al.,
2018). These recordings were based on a gesture production
similar to what was performed in the present study, although
using real objects placed in front of the participants rather than
images on a computer screen. Following the same methodology
of Trujillo et al. (2019), we utilized the motion tracking data from
the 2018 recordings in order to reconstruct the movements of
the upper-body joints (Trujillo et al., 2018). Videos consisted of
these reconstructions, using x, y and z coordinates acquired at
30 frames per second of these joints (see Figure 1 for an illus-
tration of the joints utilized). Note that no joints pertaining to
the fingers were visually represented. This ensured that hand-
shape could not be used to infer the object of the enacted action
being performed (Ansuini et al., 2014, 2016). These points were
depicted with lines drawn between the individual points to cre-
ate a light stick figure, representing the participants’ kinematic
skeleton. These stick-light figures, while highly reduced, have
previously been used in an fMRI experiment and successfully
elicited activation in both biological motion and social (i.e. men-
talizing) regions (Trujillo et al., 2020). Skeletons were centered in
space on the screen, with the viewing angle adjusted to reflect an
azimuth of 20◦ and an elevation of 45◦ in reference to the center
of the skeleton. This stick-light skeletons were used in order to
reduce the visual information available to the participant, ensur-
ing that the only information available was the movements of the
body. In total, we utilized 120 stimuli, depicting 30 unique ges-
tures (see Appendix 1). While specific depictions (e.g. peeling a
banana and opening a lock) were repeated several times through-
out the experiment, each of the 120 stimuli consisted of a unique
actor–depiction combination. In other words, if ‘peeling banana’
appeared four times, the four instances were performed by four
different participants from the (Trujillo et al., 2018) study. We used
this set of stick-light figures rather than, for example, more nat-
uralistic video stimuli because this type of stimuli ensures that
the main difference between videos is the kinematic qualities of
the gesture rather than anything about the actors themselves.
The videos also have the advantage of being unscripted. We have
included a sample stimulus video in Supplementary File 1 as an
example.

Task
During the task (Figure 1), participants were first presented with
two response options in random order. This was the Prime phase.
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Fig. 1. Schematic overview of gesture comprehension task and stimuli. Trials start with a prime, followed by the stimulus video, after which the two
response options are again shown and the participant is able to respond. After this, there is a short ISI.

After this, a stimulus video was then displayed on the screen.
After this stimulus phase, the two response options were again
presented on screen. The two possible answers were presented,
one on the left, and one on the right. During this Response phase,
participants could use a button box to pick either the left or right
answer using the left and right buttons on the button box. Par-
ticipants were given 2500ms to respond. Answers consisted of
one verb and one noun that captured the action (e.g. the correct
answer to the item ‘peel the banana’ was ‘peel’). Correct answers
were randomly assigned to one of the two sides. The second
option was always one of the possible answers from the total set.
Therefore, all options were presented equally often as the correct
answer and as the wrong (distractor) option. After responding,
there was a variable interstimulus interval (ISI) during which par-
ticipants would see a fixation cross for a period of 1000ms with
a jitter of 250ms. See Figure 1 for a schematic overview of a trial.
Accuracy and response time (RT) were recorded for each video.
As this is part of a larger project, we will not discuss the analy-
ses of the behavioral results in this paper. The main behavioral
results can be found in Appendix 2 and discussed in more detail
in Trujillo et al. (2021).

Analyses
Activation
As an initial sanity check of the data, we performed a general
linear model (GLM) analysis. This allowed us to quantify gen-
eral brain activation in response to the task, specifically whether
theoretically expected regions would be activated, and check for
any potential differences between the two groups. For this analy-
sis, we included regressors for motion parameters, task response,
ISI, prime screen, video viewing—correct, and video viewing—
incorrect. The two video-viewing regressors are the main regres-
sors of interest and relate to the total duration during which

participants were seeing the gesture video, split for videos for
which a correct response was given, and videos for which an
incorrect response was given.

Our main effect of interest was video viewing over baseline,
taking only correct trials. This is because we were interested
in which brain areas were active during accurate recognition of
a gesture. After main effects analyses, which were carried out
as separate contrasts for each group, we also calculated group-
specific contrasts. These were ASC>NT, and NT>ASC. These
contrasts allowed us to test whether activation of certain brain
regions is more prominent for one group or the other. Result
figures for these analyses were generated using MRIcron (Rorden
and Brett, 2000).

Regions of interest
The regions chosen for subsequent analysis via graph theory
approaches represent the brain areas that are typically associated
with action recognition tasks (i.e. the so-called AON) as demon-
strated by meta-analyses (Caspers et al., 2010; Arioli and Canessa,
2019). This allows our analyses to be more focused on areas that
are likely to be relevant for the task at hand. The volumetric
regions of interest (ROI) for this study were implemented in the
Conn toolbox (version 17), which utilizes a set of ROIs combin-
ing the Harvard-Oxford atlas (Desikan et al., 2006) and the AAL
atlas (Rolls et al., 2020), which use structural parcellation rather
than spherical, purely center-coordinate-based ROIs. The ROIs
included in this study, and their center coordinates, were: left
IFG (−51, 26,2), right IFG (54, 28, 2), left inferior parietal sulcus
(IPS; −39, −43, 52), right IPS (39, −42, 54), left pSTG (−57, −47,
15), right pSTG (59, −42, 13), left PCG (−39, −6, −51), right PCG
(41, −8, 52), medial prefrontal cortex (mPFC; 1, 55, −3) and pre-
cuneus (1, −61, 38). The first eight regions were selected due to
their involvement in action observation, while the precuneus and
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mPFC were additionally included due to their strong role in inten-
tion recognition (Enrici et al., 2010; Tettamanti et al., 2017; Trujillo
et al., 2020). Given that the kinematic characteristics of our stimuli
have also been linked to social intention attribution, we had rea-
son to believe that including these key intention processing areas
would be useful for understanding the complete network of areas
involved in processing socially relevant gestures.

Connectivity
While the GLM analysis provides a whole-brain overview of
‘where’ information is potentially being processed, connectivity
analysis (our primary analysis in this study) allows us to test
‘how’ information is processed and moves throughout the brain.
For this analysis, we used a graph theoretical approach, which
treats a set of brain regions (described above) as nodes on an
interconnected graph. While graph theory analyses can use any
number of brain regions as nodes, we chose to focus our analy-
sis on a set of task-relevant regions (see subsection ‘Regions of
interest’). At the same time, it is a more data-driven approach
than methods such as psychophysiological interactions, which
requires a seed region to be chosen, or dynamical causal mod-
eling, which requires assumptions about directionality and can
be computationally very intensive for larger networks. Finally,
graph theoretical approaches are particularly advantageous as
we are interested in information integration and local vs global
processing based on previous autism literature.

While graph theory allows one to calculate many different
metrics, we focus our analyses on two specific metrics: local effi-
ciency and global efficiency. In graph theory, the starting point for
analyses is calculating which nodes (i.e. functional brain regions)
are connected. In our approach, we consider a weighted graph,
meaning that connections are the correlation strength between
two nodes rather than being nonweighted, where connections
are binary, either connected or not. CONN specifically uses a
weighted least squares linear model, with event-specific boxcar
time series convolved with a hemodynamic response function
in order to calculate weighted connectivity values. An impor-
tant base metric in graph theory is then the path length, which
describes how closely two regions are connected. For example,
if information has to travel via multiple intermediary regions
before reaching the other region, there is a higher path length.
In weighted graphs, rather than calculating the shortest path
based purely on the presence of connections, the path length is
calculated by taking the inverse of the interregional connectivity
values. Therefore, path length not only captures the functional
distance between regions in terms of whether or not there is a
direct connection but also how ‘strong’ this path is in terms of its
connectivity values. This is because higher connectivity indicates
a shorter effective ‘path’ between the regions. Our two measures,
local and global efficiency, are directly related to the concept
of path length. ‘Local efficiency’ is defined as the inverse of the
shortest path length between a given node and all of its neigh-
bors. Local efficiency thus captures local information integration.
When applied to the entire network, local efficiency reflects the
degree of local interconnectedness, with higher local efficiency
suggesting that each region is connected primarily to each of its
neighbors, while lower local efficiency suggests that connections
are more sparsely distributed and further across the network.
‘Global efficiency’ is defined as the inverse of the shortest path
between a node and all other nodes in the network. In contrast
to capturing local integration at the level of a single node, this
metric reflects the centrality or importance of the node in the

entire network. When applied to the entire network, global effi-
ciency reflects how connected the network is as one complete
system, with higher global efficiency suggesting that regions are
well connected across the entire network, rather than being pri-
marily connected at the level of neighbor-to-neighbor. Note that
both measures provide a value between 0 (lowest efficiency) and
1 (highest efficiency).

The efficiency metrics are calculated using the CONN toolbox,
which uses the same preprocessed data as described for the GLM
analysis but additionally includes a denoising step that ensures
that spurious correlations due simply to simultaneous activa-
tions in response to the same stimulus are removed (i.e. task-
related fluctuations). This denoising step additionally includes
12 motion parameters (three translations, three rotations and
their first-order derivatives) in order to account formotion-related
BOLD activity. In both cases, denoising is performed on each
subject separately. Efficiency matrices are calculated from the
Fisher-transformed (Z) correlation coefficients between regions.
Efficiency metrics, after being calculated in CONN, are subse-
quently imported into R and tested using linear mixed effects
models (see next subsection).

Statistical testing of connectivity measures
For statistical testing, we take the efficiency metric (i.e. local
or global connectivity) as the dependent variable, participant
and ROI as random effects and group as fixed effects. Two data
points were included for each participant: one for the correct tri-
als and one for the incorrect trials. This was done to account
for variation that may be due to recognizing a gesture com-
pared to not recognizing it. Random slopes are not included,
as there was insufficient data per participant for these models.
Models are tested using chi-square model comparisons against a
null model. This null model included the same random effects
structure but did not include group as a fixed effect. A sig-
nificant model comparison test would therefore indicate that
group membership contributes significantly to explaining the
variance in the graph metric beyond what can be attributed to
baseline variation between individuals. Post hoc comparisons
were calculated using the ‘emmeans’ package, which calcu-
lates group comparisons, per ROI, with P-value adjustment using
Tukey’s HSD.

Association between connectivity and performance on the
gesture recognition task
In order to assess whether gesture recognition performance
could be explained by the connectivity measures, we additionally
utilized the same models described in Trujillo et al. (2021) for
gesture recognition accuracy and RT. Namely, accuracy
was modeled as accuracy∼video_duration+ group*observed_sub
movements + (1|participant) + (1|actor) + (1|item), while response
time was modeled as RT∼video_duration+ observed_gesture_
space+ observed_submovements+ group*observed_peak_velocity +

(1|participant) + (1|actor) + (1|item). Observed gesture space, sub-
movements, and peak velocity refer to the kinematic properties
of the observed gesture. For the current analysis, we used these
same models but tested whether including mean local or global
efficiency, with an interaction with group, significantly improved
the model fit. This would suggest that brain network topology
explains additional variance in task performance beyond the
characteristics of the gestures themselves. We used the same
chi-square model comparison described above.
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Association between connectivity and neuropsychological
measures
In addition to the a priori defined analyses defined above, we per-
formed an additional exploratory test of whether the two connec-
tivity measures are associated with relevant neuropsychological
measures. To this end, we built mixed models with local or
global efficiency as the dependent variable and participant and
brain region as random intercepts. In three separate models, we
assessed whether the model fit was improved (i.e. efficiency vari-
ance was better explained) by including AFQ score, AQ score or
motor coordination (assessed by Purdue Assembly scores). We
tried to fit these models with random slopes for our independent
variable of interest but did not include them when this led to
convergence or singularity issues. The same model comparison
procedure was used as described above. In the case of significant
model improvements, we additionally tested whether adding an
interaction with group membership would additionally improve

the model, as this would indicate that the association between
efficiency and the neuropsychological measure differed for autis-
tic compared to neurotypical individuals. These tests were carried
out based on previous reports of network connectivity being influ-
enced by autism symptom severity (Delbruck et al., 2019), as well
as motor coordination being associated with activity in the AON
(Kilroy et al., 2021).

Results
Activation
The main GLM analysis tested which brain areas were signifi-
cantly activated while viewing a gesture that would be correctly
identified (contrast: video viewing—correct response vs baseline).
The ASC group showed the activation of, amongst others, the
bilateral IFG (BA 47), bilateral middle frontal gyrus (BA 9 and 46),
as well as the caudate nucleus. The NT group similarly showed

Table 2. Overview of GLM main results, per group

L/R BA Region K t z X Y Z

ASC main effects (video viewing)
R 9 IFG 15 10.21 7.31 39 11 23
R 13 Insula 32 8.28 6.42 33 26 −4
L 47 IFG 38 8.22 6.33 −30 23 −7
L Cerebellum 46 7.58 6.03 −30 −73 −55
R Cerebellum 43 7.13 5.78 27 −67 −55
R Cerebellum 12 7.13 5.78 42 −46 −19
R 46 IFG 10 6.93 5.67 12 −10 8
L Caudate body 35 6.85 5.62 −45 29 14
R Thalamus 16 6.88 5.64 21 5 8

NT Main Effects (video viewing)
R Thalamus 54 8.77 6.63 12 −16 11
L Cerebellum 66 8.42 6.47 −27 −70 −52
R Cerebellum 66 8.24 6.38 12 −76 −46
L 47 IFG 33 8.16 6.33 −33 20 −4
R Caudate Body 47 7.85 6.17 15 5 14
R 9 MFG 27 7.68 6.08 39 14 26
R 47 IFG 39 7.57 6.03 42 29 −1
L Thalamus 32 7.51 5.99 −9 −13 5
L 46 MFG 24 7.00 5.71 −42 17 23

All results are significant at p-FWE<0.05, k<10. L/R= left/right; BA=Brodmann area; K= cluster size; MFG = middle frontal gyrus.

Fig. 2. Overview of GLM results, depicting results from the two groups. Colored areas indicate voxels significantly (p < 0.05 FWE corrected) associated
with the video viewing vs baseline contrast. The color bar indicates the corresponding T-values. The far-right sagittal plane image displays the slice
locations. The upper panel shows results from the ASC group, while the lower panel shows results from the NT group.
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Fig. 3. Overview of connectivity patterns within the network of interest (i.e. AON). A provides a visualization of the regions of interest within the brain,
and how they are connected. The specific connections and connectivity strengths are depicted in B, which shows the connectivity ring for the two
groups combined, providing a general overview of task-related connectivity. C depicts the same connectivity ring for the ASC group, while D depicts
the connectivity ring for the NT group. In B, C, and D, FDR-corrected significant connections are depicted by bands between regions, with band color
depicting the F-value (i.e. association between connectivity strength and video viewing condition) for that connection.

the activation of the right IFG (BA 9 and 46), as well as the caudate
nucleus. A complete overview of these main results can be seen
in Table 2. Figure 2 showsmain effects pooled across both groups.
No significant clusters were found for the contrasts ASC>NT or
NT>ASC.

Connectivity
Our connectivity analyses focused on a network of task-
relevant action observation regions (Figure 3A and B).
Both groups showed patterns of significant connectivity
(Figure 3C and D).

In terms of global efficiency, our linear mixed effects model
showed an overall association between participant group and
global efficiency, χ2 (1)=5.557, P=0.018. Specifically, this model
indicated that global efficiency scores in the NT group were 0.021
higher compared to the ASC group (t=2.378). However, Tukey-
corrected pairwise comparisons across the ROIs revealed no indi-
vidually significant comparisons, suggesting that while global
efficiency for the AON is higher overall in the NT group, the effect
may be subtle at the level of individual ROIs. See Figure 4 for an
overview of the data distributions.

In terms of local efficiency, we first scaled the values due
to model convergence issues. Our linear mixed effects model
showed an overall association between the participant group and
local efficiency, χ2 (1)=5.436, P=0.019. Specifically, this model
indicated that local efficiency scores were 0.483 higher in ASC
participants compared to NT participants (t=2.470). Pairwise
comparisons showed higher local efficiency for the left IFG (t-
ratio=2.129, P=0.035), the left pSTG (t-ratio=2.473, P=0.015),
the right pSTG (t-ratio=1.985, P=0.049) and the overall network
(t-ratio=2.075, P=0.041). See Figure 5 for an overview of these
results.

Association between connectivity and gesture
recognition
We did not find any evidence for local efficiency explaining any
additional variance in gesture recognition accuracy, χ2 (4)=5.054,
P=0.282, or RT, χ2 (2)=0.059, P=0.971, beyond group and kine-
matic information.

We similarly did not find any evidence for global efficiency
explaining any additional variance in gesture recognition accu-
racy, χ2 (4)=4.380, P=0.357, or RT, χ2 (2)=4.365, P=0.113,
beyond group and kinematic information.

Association between connectivity and
neuropsychological measures
For local efficiency, we found no association with AQ
(χ2 (1)=2.575, P=0.109) or AFQ (χ2 (1)=2.263, P=0.133). How-
ever, we found that local efficiency is associated with motor
coordination (χ2 (1)=5.616, P=0.018), with lower efficiency
being associated with higher motor coordination (β = −0.066,
t=−2.394). See Figure 6A adding Group did not significantly
improve the model fit (χ2 (2)=2.747, P=0.253). None of these
models contained random slopes. Together these results indicate
that local efficiency is significantly associated with motor cog-
nition in general, but group membership does not explain any
additional variance in that association.

For global efficiency, we found a significant association
with AQ (χ2 (1)=4.594, P=0.032), with lower efficiency scores
being associated with higher AQ scores (β=−0.001, t=−2.179,
P=0.036; Figure 6C). Adding Group did not significantly improve
the model fit (χ2 (2)=1.979, P=0.372). We additionally found a
significant association between global efficiency and motor coor-
dination (χ2 (1)=7.059, P=0.008), with higher global efficiency
being associated with higher motor coordination (β=0.008,
t=2.712, P=0.010 Figure 6B). Adding Group did not signifi-
cantly improve the model fit (χ2 (2)=3.051, P=0.218). We found
no association between global efficiency and AFQ score (χ2

(1)=1.797, P=0.180). None of these models contained random
slopes. Together, these results indicate that global efficiency is
associated with both AQ and motor coordination, although group
membership does not explain any additional variance in that
association.

Discussion
This study set out to quantify differences in brain network topol-
ogy in autistic and neurotypical individuals during a silent gesture
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Fig. 4. Global Efficiency, compared between groups, across regions of interest. Each plot represents one of the regions of interest, with the first plot,
‘Network’, depicting the entire functional network of regions. In each plot, the ASC group is depicted in blue, while the NT group is depicted in yellow.
Boxplots depict the global efficiency (y-axis), with the horizontal bar providing the median, the ends of the box providing the first and third quartile.
Note that while efficiency is a continuous variable, the possible values it can assume are dependent on the number of connections in a set network.
Therefore, the number of unique values can vary per region.

Fig. 5. Local efficiency, compared between groups, across regions of interest. Each plot represents one of the regions of interest, with the first plot,
‘Network’, depicting the entire functional network of regions. In each plot, the ASC group is depicted in blue, while the NT group is depicted in yellow.
Boxplots depict the global efficiency (y-axis), with the horizontal bar providing the median, the ends of the box providing the first and third quartile.
Note that while efficiency is a continuous variable, the possible values it can assume are dependent on the number of connections in a set network.
Therefore, the number of unique values can vary per region.

recognition task. We found that the AON in autistic individuals
was characterized by higher local efficiency and lower global effi-
ciency compared to the AON in the neurotypicals. These findings
suggest that functional brain networks organize differently in
autistic and neurotypical individuals when viewing and recogniz-
ing meaningful (silent) gestures.

In terms of brain activation, both groups showed the acti-
vation of areas that are frequently associated with action or

gesture processing, including the bilateral IFG. This region has
been associated with semantic processing of gestures (Willems
et al., 2007; Drijvers et al., 2018), as well as action understanding
more generally (Pobric and Hamilton, 2006). We found no signif-
icant differences between the two groups in terms of activation,
which suggests that any processing differences are more related
to the ‘organization’ of the functional brain network rather than
the activation of any particular regions.
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Fig. 6. Significant associations between connectivity measures and behavioral measures. Panel A shows the negative correlation between motor
coordination (x-axis) and local efficiency (y-axis). Panel B shows the positive correlation between motor coordination (x-axis) and global efficiency
(y-axis). Panel C shows the negative correlation between AQ (x-axis) and global efficiency (y-axis). All panels display the raw data points as circles, and
the fit line based on the mixed effects models. The light shading around the fit line provides the standard error of the regression line.

Zooming in to the organization of the AON, we found a dis-
sociation between autistic and neurotypical individuals in terms
of how the AON organized during the viewing of communica-
tive gestures. Specifically, autistic individuals showed stronger
patterns of local processing than neurotypical individuals, while
the neurotypical group conversely showed stronger patterns of
global processing. In other words, the AON of autistic individ-
uals shows more characteristics of being segregated. That is,
each node (i.e. task-relevant brain region) is more strongly con-
nected to its immediate neighbors rather than more distant
regions across the network. This is in contrast to the neurotyp-
ical group, where nodes showed comparatively more long-range
connections (within the context of the network) rather than being
primarily connected with neighboring regions. Most directly, this
result fits with the finding of decreased long-range connectiv-
ity in autistic individuals during rest (O’Reilly et al., 2017; Hong
et al., 2019). This group difference also demonstrates that reduced
long-range connectivity also characterizes the brain during ges-
ture recognition. However, it should be noted that the signif-
icantly higher global efficiency in the neurotypical group was
quite small (0.021 times higher), and it is, therefore, difficult
to say if this difference would be meaningful at a behavioral
level. Our findings furthermore fit with the general pattern of
altered connectivity of the AON in autism (Kilroy et al., 2019).
It is especially interesting to note that the specific regions that
showed the enhanced local processing efficiency were the pSTG
and left IFG, both of which have frequently been indicated as
relating to understanding (communicative) movements (Giese
and Poggio, 2003; Pobric and Hamilton, 2006; de Lange et al.,
2008; Jastorff et al., 2009; Dick et al., 2014). Taken together, task-
relevant brain regions, as well as the AON as a whole, seem

to show a different pattern of information transfer in autistic
individuals.

Associations between brain and behavior
In addition to the main network findings, these findings can also
be tentatively related to behavior. First, we found that, across
both groups, higher motor coordination scores were associated
with the more ‘neurotypical’ pattern of network efficiency (i.e.
lower local efficiency and higher global efficiency). This is in
line with, and builds on, the findings of Kilroy and colleagues
who found that motor coordination is associated with activation
within the AON (Kilroy et al., 2021). Additionally, lower global effi-
ciency was associated with higher AQ scores, which is in line with
Delbruck and colleagues’ finding of atypical resting-state con-
nectivity within the AON being associated with autism symptom
severity (Delbruck et al., 2019). Together, these findings all point
toward lower global efficiency and higher local efficiency being
linked to autistic characteristics as measured by more general
behavioral or neuropsychological measures, such as the AQ or
Purdue pegboard test.

Additionally, while the current paper focused on brain net-
work topology, these findings come from a larger study where we
also assessed behavioral performance on this gesture recognition
task. In our assessment of the behavioral results of this gesture
recognition task, we found that, similar to previous studies (e.g.
von der Lühe et al., 2016), autistic individuals were not impaired
at recognizing the gestures (Trujillo et al., 2021). However, they
seemed to process the communicative modulation of complex-
ity or repetitiveness of movements within the gestures differently
than neurotypicals (Trujillo et al., 2021). Our current findings
do not show any evidence for these task-related performance
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measures being associated with the global or local efficiency of
the task-relevant network. Together with the AQ and motor coor-
dination results, it, therefore, seems that network properties are
different between autistic and neurotypical individuals and that
these topological properties may be associated with more gen-
eral characteristics but not necessarily with themore fine-grained
measures of specific task performance. However, the lack of asso-
ciation with task performancemay also be due to the fact that the
groups did not differ in terms of accuracy overall but only in the
interaction between accuracy and observed kinematics. One pos-
sible direction for future work is to look into the role of attention
in task performance and its relation to network properties.

Limitations
While this study provides a first investigation of network topology
in autistic individuals relating to the recognition of communica-
tive manual gestures, results may be affected by the nature of the
stimuli. Specifically, participants performed the task primarily
as observers tasked with recognizing gestures without any fur-
ther linguistic or interactional context. This scenario can affect
how a person engages with the communicatively intended stim-
uli, which may also be reflected in brain responses (Schilbach
et al., 2013; Fuchs, 2017). However, given the already variable
nature of brain networks in autism (Falahpour et al., 2016), we
are confident that our study provides a strong first step to under-
standing the brain dynamics and the role of sensory process-
ing underlying the recognition of communicative behaviors in
autism.

It should also be noted that we do not explicitly control for (i.e.
factor out) lower-level aspects of processing such as attention and
biological motion processing. Therefore, the network structure is
likely related to not only gesture recognition but also the lower-
level processes involved in gesture recognition.

Finally, there are several left-handed individuals in our sample.
While this is unlikely to affect the network-level graph measures,
any differences in lateralization may affect the region-level graph
measures (e.g. affecting whether the left or right PCG has a higher
local or global efficiency). However, the fact that we still find
differences between the groups despite this additional variance
suggests that our findings are robust.

Conclusions
In sum, our study builds on previous resting-state functional-
connectivity studies of autism by showing that network topology
while performing a silent iconic gesture recognition task dif-
fers from neurotypicals. Specifically, autistic individuals show
increased local efficiency and decreased global efficiency, sug-
gesting a more clustered, local-processing-oriented network con-
figuration rather than the more integrative network organization
seen in neurotypical participants. Our study, therefore, provides
evidence that functional, task-relevant networks are organized
differently in autistic adults. These results have implications
for understanding differences in how autistic individuals process
(social) information, even when behavioral differences may be
relatively subtle.
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Appendix 1. Gesture items

Original (Dutch) Response option Dutch English Response option English

doe de apple in de kom Plaatsen Place the apple in the bowl Place
borstel je haar met de borstel Borstelen Brush your hair with the brush Brush
veeg het papier af Afvegen Brush off the paper Brush off
kreukel het papier Kreukelen Crumple the paper Crumple
snij het brood met de mes Snijden Cut the bread with the knife Cut
knip het papier doormidden Knippen Cut the paper in half Cut
wis de figuur met de gom Wissen Erase the figure with the eraser Erase
vouw het papier doormidden Vouwen Fold the paper in half Fold
sla de spijkers met de hammer Hameren Hammer the nails with the hammer Hammer
meet het papier met het meetlint Meten Measure the paper with the measuring tape Measure
open het potje Opendoen Open the jar Open
open het slot met de sleutel Openmaken Open the lock with the key Open
pel de banaan Pellen Peel the banana Peel
doe het dopje op de pen Opdoen Put the pencap on the pen Put on
giet het water in het glas Gieten Pour the water in the glass Pour
doe de hoed op Opdoen Put on the hat Put on
doe de ring aan Aandoen Put on the ring Put on
verwijder het kurkje van de fles Verwijderen Remove the cork from the bottle Remove
verwijder het dopje van de pen Verwijderen Remove the pencap from the pen Remove
schrob het bureau met de spons Schrobben Scrub the desk with the sponge Scrub
schud de kaarten door elkaar Schudden Shuffle the cards Shuffle
pers de citroen uit Persen Squeeze the lemon Squeeze
stapel de blokken op elkaar Stapelen Stack the blocks on top of each other Stack
stempel het papier Stempelen Stamp the paper Stamp
niet de papieren samen Nieten Staple the papers together Staple
dompel het theezakje in het water Dompelen Steep the teabag in the water Steep
roer de thee met de lepel Roeren Stir the tea with the spoon stir
doe de zonnebril op Opdoen Put on the sunglasses Put on
scheur het papier doormidden Scheuren Tear the paper in half Tear
gooi de dobbelstenen Gooien Roll the dice Roll (throw)
schrijf je naam op het papier met de pen Schrijven Write your name on the paper with the pen write

Appendix 2. Behavioral results

% Accuracy (s.d.) RT in milliseconds (s.d.)

ASC 69.95 (12.4) 1439.49 (576.7)
NT 71.14 (5.2) 1132.83 (295.5)
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