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Abstract Although transplantation has been a standard med-
ical practice for decades, marked morbidity from the use of
immunosuppressive drugs and poor long-term graft survival
remain important limitations in the field. Since the first solid
organ transplant between the Herrick twins in 1954, transplan-
tation immunology has sought to move away from harmful,
broad-spectrum immunosuppressive regimens that carry with
them the long-term risk of potentially life-threatening oppor-
tunistic infections, cardiovascular disease, and malignancy, as
well as graft toxicity and loss, towards tolerogenic strategies
that promote long-term graft survival. Reports of “transplant
tolerance” in kidney and liver allograft recipients whose im-
munosuppressive drugs were discontinued for medical or non-
compliant reasons, together with results from experimental
models of transplantation, provide the proof-of-principle that
achieving tolerance in organ transplantation is fundamentally
possible. However, translating the reconstitution of immune
tolerance into the clinical setting is a daunting challenge
fraught with the complexities of multiple interacting mecha-
nisms overlaid on a background of variation in disease. In this
article, we explore the basic science underlying mechanisms
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Introduction

Transplantation tolerance has a number of definitions. The
original definition of Medawar in the 1950s referred to non-
responsiveness to antigens [1]. In animal studies, tolerance may
be defined as good longstanding graft function in the presence
of a competent immune system, with no signs of graft immune
injury when the animal is killed. The latter is obviously not
useful in human transplantation and therefore “operational
tolerance” is the term most widely used. Organ transplant
recipients who have been successfully weaned from immuno-
suppression and have maintained stable graft function for 1 year
or more are referred to as functionally or operationally tolerant
[2, 3]. Although up to 20% of liver transplant recipients may be
successfully withdrawn from immunosuppression [3—5], oper-
ational tolerance to renal allografts appears to be much less
frequent [6, 7] and a predictive biomarker for success versus
failure in weaning immunosuppression has yet to be identified
and validated. As a result, subjects who fail the withdrawal of
immunosuppression experience episodes of rejection leading to
the re-initiation of immunosuppression after anti-rejection treat-
ment. It is not known whether they experience compromised
long-term graft survival as a result [8].

Current barriers to successful long-term allograft survival
Since the first human kidney transplant carried out by

Dr. Joseph Murray in 1954 between identical twins, the reg-
ular development of new chemical immunosuppressants, as
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well as improved surgical and ancillary care, have led to
dramatic increases in kidney allograft survival rates and en-
abled the transplantation of livers, hearts, pancreases, and
lungs, as well as composite tissues [9]. Nonetheless, substan-
tial problems remain in the fields of both adult and pediatric
transplantation, and improvements in short-term (1-year) al-
lograft survival have not been paralleled by gains in long-term
graft survival (US Organ Procurement and Transplantation
Network. Annual Data Report 2011 . Accessed July 17, 2013).
The reasons for graft loss are complex but can be broadly
classified into three categories: inflammation-induced reac-
tions against graft tissues, specifically ischemia—reperfusion
(I-R) injury; immune—initiated reactions against graft tissues,
and direct organ toxicity by the immunosuppressive drug.
Strategies aimed at inducing operational tolerance in allograft
recipients will address these last two modes of graft loss but,
while it may be beyond the realms of this review, it is impor-
tant to remember that if transplantation tolerance is ever to be
achieved, the early inflammatory response to allograft tissue
must also first be regulated.

Briefly, three alloimmune responses to transplanted tissues
have been described: hyperacute, acute, and chronic rejection .
When an alloantigen is recognized, the innate and adaptive
immune systems respond synergistically to reject the allograft
through non-exclusive pathways, including contact-dependent
T-cell cytotoxicity, granulocyte activation by either T helper 1
(Thl1)- or Th2-derived cytokines, natural killer (NK) cell acti-
vation, alloantibody production and complement activation
[10]. With the introduction of prospective full immunological
screening, hyperacute graft loss, which occurs when preformed
donor-specific antibodies are present in the recipient’s serum, is
thankfully now rare. Equally, the use of potent immunosup-
pressive agents immediately following and in the maintenance
phase after renal transplantation has seen a dramatic fall in the
incidence of acute rejection, generally defined as rejection
within the first year following transplantation.

As readers will know, the term chronic rejection, encom-
passing a multifactorial pathogenesis with alloimmune-
dependent and -independent causative factors, is now consid-
ered meaningless in its lack of specificity and is no longer used
in the Banff classification to renal allograft pathology [11].
Instead, the classification system allows for chronic antibody-
mediated rejection and a score to reflect interstitial fibrosis and
tubular atrophy [11]. The significance of the longevity of
alloimmune mechanisms in the pathogenesis of chronic allo-
graft damage is only now coming to the fore and substantial
problems continue to hinder the realization of effective treat-
ment strategies. In short, improvements in the short-term suc-
cess of renal and extra-renal transplantation have had a minimal
impact on long-term success and the rate of late graft loss is
essentially unchanged [12, 13]. While there have been no
studies directly comparing the outcome of tolerant patients to
those who continue to receive immunosuppression, the intuitive
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advantages associated with the avoidance of chronic immuno-
suppression continue to drive the enthusiasm for implementing
approaches to induce tolerance to transplanted organ allografts
[14].

Physiological self-tolerance

The ability of the immune system to avoid damaging self-
tissues is referred to as self-tolerance, and failure of self-
tolerance underlies the broad class of autoimmune diseases.
Self-tolerance may be induced in immature self-reactive lym-
phocytes in generative lymphoid organs (central tolerance), or
in mature lymphocytes in peripheral sites (peripheral tolerance).
Central tolerance is itself made up of negative selection: the
deletion of autoreactive thymocytes, and dominant tolerance:
the generation of natural (n) T regulatory (Treg) cells with an
avidity for self-peptide intermediate between that necessary for
positive selection of conventional effector T (Tconv) cells and
that needed for the deletion of autoreactive T cells [15].
However, central tolerance is incomplete and control of self-
reactive cells that migrate to the periphery becomes the role of
peripheral tolerance mechanisms. Peripheral tolerance can act
at several levels. The simplest scenario involves ignorance of
self-antigens, either because the latter are sequestered in sites
not easily accessible to the blood/lymph-borne immune system
[16, 17] or because the amount of antigen does not reach the
threshold required to trigger an effector response [18].
Alternatively, T-cell encounters with self-antigen might lead
to functional inactivation: anergy. Even when T cells become
fully activated, effective tolerance can still be maintained if the
nature of the response is such that pathogenic effects are
avoided. Just as certain chemokines and cytokines promote
pathogenicity, regulating where self-reactive T cells go and
what they make represents another mechanism to prevent au-
toimmune destruction in the periphery. We now know that these
mechanisms can be exploited for the prevention of transplant
rejection [19], as well as the treatment of autoimmune and
allergic disease, and antigens can be administered in ways that
induce tolerance rather than immunity.

The balance of Treg cells and Tconv cells is key to immune
homeostasis. Tregs are defined by their expression of the tran-
scription factor FOXP3, in addition to surface phenotypic
markers that are not restricted to Tregs, such as CD4, CD25,
GITR, and cytotoxic T lymphocyte antigen 4 (CTLA4). Their
importance is underscored by the lymphoproliferative and
multi-organ autoimmunity phenotypes of Scurfy mutant mice
and the human conditions /mmunodysregulation
Polyendocrinopathy and Enteropathy, X-linked (/PEX) syn-
drome and X-Linked 4utoimmunity-4 llergic Dysregulation
syndrome (XLAAD), which result from mutations in the foxp3
gene and consequent lack of Tregs [20].

The majority of Treg cells develop naturally in the thymus
(nTregs) and migrate to the periphery. In addition, TGF-f3 and
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IL-2 are able to promote, in response to T cell receptor (TCR)/
CD28 co-stimulation, the differentiation of peripheral naive
CD4" T cells into CD4"CD25"FOXP3" cells, otherwise
known as inducible (i) Treg cells, that possess T cell suppres-
sive properties akin to those of nTregs [21-23].

Strategies for inducing transplantation tolerance

At the risk of oversimplification, there are two obligatory
components to achieving transplantation tolerance: depletion
of alloreactive Tconv cells and upregulation of alloreactive
Treg cells. In recipients of solid organ transplants, the high
frequency of alloantigen-reactive Tconv cells in the immune
repertoire of the recipient compared with the relatively small
number of Treg cells present at the time of transplantation
means that the balance of cells is shifted towards allograft
destruction [24]. This crucial balance between graft destruc-
tion and regulation can be shifted using strategies to inhibit the
activity of Tconv cells and/or increase the relative frequency
or functional activity of alloantigen-reactive Treg cells
[25-29]. With this in mind, mixed chimeric and cellular
tolerogenic therapies are being trialed where drug-based ther-
apies have failed. A recent review by Page at al [30] summa-
rizes current therapeutic attempts (Table 1). It is notable that
most of the tolerogenic strategies that have been attempted
experimentally and clinically include depleting agents, even
when they are not named as the underlying strategy [31].

Recent work by Wu et al. identifies the innate immune
system as a potential target through which to manipulate the
tolerance-rejection immune balance [32]. After organ trans-
plantation, Toll-like receptors (TLRs) drive innate immune
responses as part of I-R injury and this leads to the subsequent
initiation of adaptive alloimmune responses. Wu et al. found
that mice deficient in the TLR adaptor protein MyD88 devel-
oped donor antigen-specific tolerance, which protected them
from both acute and chronic allograft rejection and increased
their survival after transplantation compared with wild-type
controls. Administration of an anti-CD25 antibody to
MyD88-deficient recipients depleted Treg cells and broke
tolerance. In addition, defective development of Th17 im-
mune responses to alloantigen both in vitro and in vivo oc-
curred, resulting in an increased ratio of Tregs to Th17 effec-
tors. The group concluded that MyD88 deficiency was asso-
ciated with an altered balance of Tregs over Tconv cells,
promoting tolerance instead of rejection.

Lymphodepletional strategies

Lymphodepletion, in the form of “induction therapy”, is an
effective strategy for addressing the precursor frequency of
alloreactive Tconv cells at the time of organ transplantation
and preventing acute allograft rejection [33]. However, ongo-
ing maintenance therapy during post-deletional cell

repopulation is still necessary to prevent T memory cells from
driving rejection and alloantibody formation [31]. Agents
have included monoclonal antibodies, radiation and cytotoxic
drugs, and several preclinical studies have found that combin-
ing lymphodepletion with other modalities may be tolerogenic
[31]. Work is now ongoing to better understand the process of
homeostatic repopulation after lymphodepletion.

Cellular therapy

In 1990 Hall et al. demonstrated that the transfer of cells from
rats accepting heart allografts following a short course of
cyclosporine to naive rats conferred donor-specific tolerance
[34]. Over the subsequent decades tremendous strides have
been made in our understanding of regulatory cells and their
roles in autoimmunity, infectious disease, cancer and trans-
plantation. In addition to CD4 " CD25 FOXP3" nTregs and
iTregs, we know that other cell populations also exhibit sup-
pressive or regulatory properties. T regulatory type 1 (Trl)
cells produce large amounts of suppressive 1L-10 [35]; T
helper 3 (Th3) cells produce suppressive TGF3 [36]; and T
regulatory type 35 (Tr35) cells produce IL-35, which is related
to the IL-12 superfamily and acts to suppress immune re-
sponse by a variety of mechanisms [37]. In addition
CDS"CD28" cells [38], CD3"CD4°CDS" cells [39] and NKT
cells [40] have all been reported to exert regulatory effects on
alloimmune responses. Until recently, the role of B cells in
immunity was thought to be limited to effector responses
through antibody production, antigen presentation or cytokine
production, but more recently they have also been shown to
serve a regulatory role [41]. However, unlike Tregs, there are
no validated molecular or phenotypic markers to define Bregs
and so they are currently defined on the functional basis of
their IL-10 production [14].

As the fate of transplanted organs is in part determined by
the balance between effector and regulatory activities, one
approach to promoting tolerance is to enhance regulatory
functions by transferring regulatory cells into transplant recip-
ients post-operatively [14]. However, Tregs make up only 1—
5% of the peripheral T cell pool so must be expanded in vitro
following isolation, which is itself challenging because the
FOXP3 marker is an intracellular protein requiring perme-
abilization of the cell prior to detection. Nevertheless, signif-
icant progress has been made in this field and experimental
studies using MHC-mismatched combinations in murine skin
and heart allotransplantation have shown that alloantigen-
specific Tregs are more effective at inducing indefinite allo-
graft survival than polyclonal Tregs [42—44]. In 2011, Sagoo
et al. translated these observations into a human in vivo model
[45]. Human Tregs were enriched from peripheral blood do-
nations from healthy volunteers and stimulated with irradiated
mature myeloid dendritic cells (DCs). The Tregs were then
sorted and expanded if they expressed two activation markers,
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Table 1 The current range of tolerogenic strategies in experimental and clinical settings (reproduced from Page et al. 2012 [30], used with permission)

Category

Therapeutic

Mechanism

T cell depletion

Costimulation blockade

Other T cell therapies

B cell therapeutics

Cellular therapy

Anti-thymocyte globulin (ATG)

Alemtuzumab

Abatacept

Belatacept

Efalizumab

Basiliximab

Aldesleukin + rapamycin
Rituximab

Belimumab

Atacicept

BR3-Fc

Bortezomib
Eculizumab

Mixed chimerism

Regulatory T cells

Regulatory T cells + IL-2

Dendritic cells

Macrophages

Mesenchymal stromal cells

Depleting polyclonal antibodies to thymocytes that express multiple target
antigens; possible induction of regulatory T cells

Depleting mAb to CD52, on T, B, NK cells, some monocytes

CTLA-4 1g, blockade of CD28:CD80/60 costimulatory pathway

CTLA-4 1g, blockade of CD28:CD80/60 costimulatory pathway

Blockade of LFA-1:ICAM-1 costimulatory pathway

Blockade of CD25 (interleukin 2 receptor « chain)

Interleukin 2 + rapamycin, to increase regulatory T cell proliferation
and survival, and stabilize the expression of Forkhead box P3(FoxP3)

Depleting mAb to CD20

Blockade of B cell activating factor (BAFF), causing depletion of follicular and
alloreactive B cells, decrease in alloantibody response, and promotion of
immature/transitional B cell phenotype a regulatory cytokine environment.

Blockade of BAFF and APRIL

Blockade of BAFF, causing decrease in peripheral, marginal zone, and
follicular B cells

Proteasome inhibitor, causing apoptosis of mature plasma cells

Blockade of complement protein C5, to prevent complement-mediated injury
due to circulating alloantibody

Infusion of donor bone marrow into myoablated/immune-conditioned recipient,
to produce co-existence of donor and recipient cells

Infusion of expanded regulatory T cells, to inhibit inflammatory cytokine
production, down-regulate costimulatory and adhesion molecules, promote
energy and cell death, convert effector

T cells to a regulatory phenotype, and produce suppressive cytokines
IL-10, TGFp, and IL35

As above, plus the addition of IL-2 to promote Treg survival,
development, and expansion

Immunomodulatory effects include their ability to acquire and present antigen,
expand and respond to antigen-specific Tregs, constitutively express low
levels of MHC and costimulatory molecules, produce high IL-10 and TGF(3
and lowIL-12, resist activation by danger signals and CD40 ligation, resist
killing by natural killer of T cells, and promote apoptosis of effector T cells

Immune suppression mediated through the enrichment of CD4™ CD25™ Foxp3
cells and cell contact-and caspase-dependent depletion of activated T cells

Inhibition of T cell activation and proliferation, potentially due to production of
IL-10, NO, and IDO, and suppression of IFNy and IL-17

CTLA-4, Cytotoxic T Lymphocyte antigen 4; IDO, indoleamine 2,3-dioxygenase; IFNy, interferon y; IL-10, interleukin 10; LFA-1, lymphocyte

function-associated antigen 1

CD69 and CD71, after allospecific activation with the DCs
in vitro. Transfer of these customized Tregs into a humanized
mouse skin transplant model prevented transplant rejection
and skin damage with higher efficacy than that associated with
the transfer of nonspecific, polyclonal Tregs. No clinical trials
of Treg therapy in solid organ transplantation have been
undertaken as yet, but promising data are emerging from early
trials using Tregs for the prevention of graft-versus-host dis-
ease (GVHD) post hematopoietic stem-cell (HSC) transplan-
tation [46—48]. The ONE Study - a multicenter Phase I/II
study funded by the European Union Seventh Framework
Programme — has set about investigating the safety of infusing
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ex vivo-expanded Treg cells into kidney transplant recipients
(www.onestudy.org) and the Russian State Medical
University are currently recruiting for a phase 1 pilot study
using autologous CD4"CD25 " FOXP3" Tregs and Campath-
1H to induce renal transplant tolerance in children (www.
clinicaltrials.gov/NCT01446484).

A second approach to promoting tolerance is to select
immunosuppressive agents that maintain the function of reg-
ulatory cells while suppressing effector cells [14]. This ratio-
nale explains the frequent avoidance of calcineurin inhibitors
(CNI) that may interfere with the development of Tregs and
tolerance [49], and the inclusion of sirolimus (Rapamycin)
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that supports the development and maintenance of Tregs [50].
Biologic agents may also have dramatically differing effects
on Tregs and Table 1 describes some of the currently available
monoclonal antibody therapies thought to favorably alter the
ratio of Treg to Tconv in the experimental or clinical setting
[30].

Chimerism

Mixed chimerism refers to a hybrid immune system
whereby donor pluripotent HSCs engraft and coexist
with recipient stem cells, giving rise to hematopoietic
lineages in the recipient [S51]. The establishment of he-
matopoietic chimerism leads to permanent and stable
donor-specific tolerance in organ transplant recipients,
and immunosuppression is usually not required to prevent
graft loss once engraftment has occurred [52]. Tolerance in-
duction by chimerism is the only approach that has been
successful in all species in which it has been tested to date,
including humans [8, 53].

It has been known since the early reports of Owen in 1945
[54] and Billingham et al. [1] in 1953 that chimerism induces
tolerance to organ and tissue transplants. Owen observed that
genetically disparate “freemartin” cattle twins sharing a com-
mon placenta were red blood cell chimeras, suggesting that each
was reciprocally tolerant to the other sibling as evidenced by
persistent chimerism after birth. Billingham, Brent, and
Medawar extended these findings to demonstrate that infusion
of hematopoietic-derived cells into newborn mice resulted in
chimerism and was associated with acceptance of donor skin
grafts [1]. In the ensuing years, significant efforts have focused
on overcoming obstacles preventing translation of this approach
to the clinical setting: GVHD, the requirement for HLA-
matched bone marrow donors, and toxicity of myeloablative
conditioning.

The achievement of transient chimerism, and weaning of
immunosuppression with stable graft function during follow-
up, in cases of simultaneous bone marrow and renal transplan-
tation for myeloma-induced renal failure in patient cohorts
from Massachusetts General Hospital [55, 56] and Stanford
[57], led the way for clinical trials in patients with end-stage
renal failure without malignancy [58]. However, the risk of
toxicity from ablative conditioning that was acceptable for
HSC transplantation in hematologic malignancy became un-
acceptable when applied to non-malignant situations such as
solid organ transplantation, and reinforced an interest in the
development of non-myeloablative or reduced-intensity con-
ditioning approaches [59—61]. Observations from years earlier
demonstrating equal tolerance in animals with 1% donor
chimerism and those with 100% donor chimerism [52] led
researchers to believe that complete replacement of the recip-
ient hematopoietic system was not a prerequisite to tolerance
induction, and indeed it is now possible to establish chimerism

and tolerance with non-myeloablative conditioning, substan-
tially reducing the risk:benefit ratio pertaining to tolerance-
induction efforts in solid organ transplantation.

In 2011, Scandling et al. reported on 16 patients who
underwent kidney and HSC transplants in Stanford, USA,
between 2005 and 2011 [62], but perhaps more promising is
Leventhal et al.’s interim report published earlier this year
which follows 15 patients who underwent living donor renal
transplantation with HSC transplantation in Chicago between
2009 and 2012 [8]. All Leventhal’s subjects were HLA-
disparate from their living kidney or HSC donor, ranging from
five of six matched related to zero of six matched unrelated.
Patients underwent non-myeloablative reduced intensity con-
ditioning with fludarabine and cyclophosphamide on days —3
and +3; and 200 cGy of total body irradiation (TBI) on day —1
relative to the renal transplantation on day 0. Hemodialysis
was performed after fludarabine and cyclophosphamide ad-
ministration to avoid toxicities of these agents. Tacrolimus and
mycophenolate mofetil (MMF) were started on day —3 and
continued as maintenance immunosuppression. Kidney trans-
plantation was performed without antibody induction therapy
or oral corticosteroid cover. A bioengineered FDA-regulated
HSC product enriched for facilitating cells was infused intra-
venously on the day following kidney transplantation. All but
one patient demonstrated peripheral blood macrochimerism
after transplantation. Chimerism was subsequently lost in
three of those patients at 2, 3, and 6 months post-
transplantation. All patients demonstrated donor-specific hy-
poresponsiveness and were weaned from full-dose immuno-
suppression. Complete immunosuppression withdrawal at 1
year post-transplant was achieved in those patients with dura-
ble chimerism. The group reported no GVHD and no engraft-
ment syndrome.

Despite these successes, the question of whether
chimerism-induced tolerance can be adopted more generally
remains to be seen. A significant degree of expertise is re-
quired to carry it out and concerns remain regarding the
potential morbidity of the conditioning regimen and the true
incidence of rejection and longer-term graft loss that will
emerge once a large number of patients are transplanted.
However, the greatest barrier to making this approach more
widely available is that it is currently only practical with live
donors, and roughly 60% of kidney transplants performed in
the US and UK (2010 data) use deceased donors. HSC trans-
plant product must be infused within 48 h of being harvested
or appropriate cryopreservation techniques need to be
established [63]. Studies are underway to adapt this approach
for deceased donors and subjects who have already had a
living donor renal transplant, and have a donor willing and
able to donate HSCs for transplantation (www.clinicaltrials.
gov/IND 14900). The HSC transplant sources from deceased
donors would be the vertebral columns, as already validated in
several clinical protocols [63].
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Mesenchymal stem cells in solid organ transplantation

Like HSCs, mesenchymal stem cells (MSC) are bone marrow
populating cells that possess an extensive proliferative poten-
tial and the ability to differentiate into a diverse range of cell
types. They occupy the stroma where they play a key role in
the maintenance of bone marrow homeostasis and regulate the
maturation of both hematopoietic and non-hematopoietic
cells. In 2008, the MiSOT consortium was founded to enable
the effective collaboration between research groups working
towards the application of adherent stem cell products in solid
organ transplantation [64]. Earlier this year, Reinders et al.
reported on a phase I study using autologous bone marrow-
derived MSCs for the treatment of allograft rejection post
renal transplant and observed a donor-specific down-
regulation of peripheral blood mononuclear cell proliferation
[65]. In keeping with this, Perico et al. describe an increase in
the ratio of Tregs to T memory cells observed during their
pilot study using autologous MSCs in renal transplantation in
2011 [66]. MSC administration in clinical transplantation
remains at the exploratory stage, with many authorities still
skeptical and wary of safety concerns regarding the potential
for MSC mal-differentiation and increased susceptibility to
opportunistic infection. Nevertheless, the goal of reducing
severe side effects of pharmaceutical immunosuppression jus-
tifies attempts to implement novel cellular therapies. Indeed,
the combination of Tregs and MSC infusions is under consid-
eration at several centers.

Biomarkers of operational tolerance

Achieving transplantation tolerance requires a bi-directional
approach. In addition to studying cellular therapies and chi-
merism induction in the quest for tolerance and improved
long-term transplant outcome, robust parameters to define
operationally tolerant transplant recipients amenable to drug
minimization or withdrawal must be established. Furthermore,
elucidation of the molecular pathways associated with the
operational tolerance phenotype could provide novel targets
for therapy.

In general, operationally tolerant kidney transplant recipi-
ents are extremely rare [67] and at present, they cannot be
identified prospectively. This poses a major hurdle in reaching
sufficient statistical power to perform meaningful analysis in
the search for tolerance biomarkers. Nevertheless, the Immune
Tolerance Network (ITN), sponsored by the National
Institutes of Health, and Indices of Tolerance consortia have
proved valuable in identifying a relatively large cohort of
tolerant kidney transplant recipients to study. The best control
group to define the immunological profile of tolerant patients
would be those patients in whom drug weaning or withdrawal
have been attempted without success [68], but immunosup-
pressive drug withdrawal in kidney transplant recipients is
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associated with a significant risk of graft loss [67] and so
clearly, for ethical reasons intentional weaning without inter-
vention cannot be performed.

Thirty-six tolerant kidney transplant recipients were iden-
tified by the two consortia and fingerprints of kidney trans-
plant tolerance have been developed [69, 70]. Stable patients
receiving standard immunosuppression and healthy individ-
uals, as well as patients with chronic rejection and stable
function while receiving low-dose steroids only, were used
as controls [68]. A large number of immunological parameters
were determined, which resulted in a cross-platform signature
of kidney transplant tolerance (Fig. 1) [68].

The liver is believed to have immunomodulatory proper-
ties, and there is growing evidence that operational tolerance
can be achieved in a proportion of liver transplant patients
significantly higher than that seen in other types of solid organ
transplantation [2]. However, recent work by Waki et al. dem-
onstrated a clear association between the presence of HLA
class I and II antibodies post pediatric liver transplantation and
future absence of operational tolerance [71]. These findings
correlate with those published by Sarwal’s group earlier this
year in pediatric renal transplant patients [72]. They report a
strong correlation between the development of de novo anti-
HLA antibodies, most often after the first year post-
transplantation, with significantly higher risks of graft injury
and function loss. Further study is required to identify thresh-
old levels and characteristics of HLA antibody specificities in
relation to the development or absence of operational
tolerance.

It is appealing to postulate that an increase in Tregs is
mechanistically associated with tolerance and that monitoring
the frequency of Tregs may identify tolerant recipients.
However, Tregs infiltrate allografts in an attempt to suppress
inflammation and thus may be present in all transplant recip-
ients, including the small subset that are tolerant to the graft,
but decreased in patients with chronic rejection. In keeping
with this hypothesis, Louis et al. found no difference in the
numbers of Tregs in tolerant individuals versus transplant
recipients receiving immunosuppression who had stable graft
function [73].

However, the same group did note an increase in total B
cell numbers in the tolerant cohort, suggesting the possibility
of B cell involvement [73], and more recently, a number of
groups have reported the presence of a strong B cell signature
in operationally tolerant transplant patients [69, 70, 74, 75].
One of these groups described a cohort of 25 operationally
tolerant kidney transplant recipients and compared the pheno-
type and patterns of gene expression in peripheral blood and
urine with those of kidney transplant recipients with stable
function who were receiving immunosuppression, and sam-
ples from healthy volunteers [70]. Unexpectedly, there was a
striking increase in the expression of B cell related genes as
well as an increase in the actual number and frequency of B
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Fig. 1 Cross-platform biomarker
signature of kidney transplant

B cell dominated gene panel

Ratio FOXP3/MAN1A2 expression

recipients determined by the
Indices of Tolerance consortium
(reproduced from Heidt and Wood
2012 [68], used with permission).
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ratio of FOXP3 to «-1,2-
mannosidase gene expression, a
low donor-specific direct T cell
response and decreased levels

of activated T cells.

Flow cytometry

B/T lymphocyte ratio
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cells in the peripheral blood of the tolerant cohort. Analysis of
microarray data demonstrated that 30 genes were differential-
ly expressed between the tolerant group and the group receiv-
ing immunosuppression. However, all the studies of B-cell
biomarkers of tolerance to date are based on the examination
of long-term tolerant allograft recipients and not the prospec-
tive study of patients as they develop tolerance. Therefore, it is
not possible to establish whether B cells are associated with
the tolerant phenotype or are simply an epiphenomenon asso-
ciated with other factors such as absence of immunosuppres-
sion. In contrast, natural killer cell transcripts seem to be the
most robust markers of operational tolerance in liver trans-
plantation, suggesting that different mechanisms operate in
the two situations [76].

The link between chimerism and tolerance is well
established and has led investigators to question whether the
presence of chimerism could act as an independent biomarker
of tolerance. The answer is “no”. A number of studies have
recently reported a dissociation between tolerance and chime-
rism [77-80] and this dissociation is now thought to be caused
by a lack of donor T-cell engraftment [80]. Production of
donor T cells in murine chimeras correlates directly with
tolerance to donor skin grafts, but chimeras without produc-
tion of donor T cells reject donor skin grafts despite persis-
tence of hematopoietic chimerism [51]. The role of donor T
cells in tolerance induction and maintenance was in fact
highlighted in Leventhal ez al’s recent clinical study to induce
tolerance to renal allografts through chimerism [81]. The
mechanism behind the absence of donor T cell production in
engrafted chimeras remains obscure but is likely to be affected
by the conditioning approach used. Reliance on donor T cell
chimerism as a biomarker for durable acceptance of hemato-
poietic grafts is not new to the HSC transplant community
[82—84], and in the development of novel non-myeloablative

conditioning strategies to induce chimerism and tolerance, the
solid organ transplant community will benefit from the lessons
learned by our HSC transplant colleagues who focus on T cell
chimerism as a primary end point [51].

Transplantation tolerance: an ongoing therapeutic goal

Strategies for inducing immune tolerance are fundamentally
similar across a spectrum of immune-mediated disorders,
including allergic disease, autoimmunity, and rejection of
allografts. To that end, the quest to achieve transplantation
tolerance has been aided significantly by two international
research consortia, the Immune Tolerance Network and the
Reprogramming the Immune System for Establishment of
Tolerance (RISET)/Indices of Tolerance study. The results
of pediatric renal transplantation have improved markedly in
the last decade [85] but the same clinical problems remain in
pediatric as adult renal transplantation: organ damage caused
by chronic immune injury, long-term toxicity of immunosup-
pressive therapy, and difficulty in developing tolerance-
inducing protocols. For that reason, The Cooperative
European Paediatric Renal TransplAnt INitiative registry
(CERTAIN; www.certain-registry.eu) has been recently set
up as a research network and platform on which to address
unmet clinical needs [86].

Concluding remarks

Achieving reconstitution of immune tolerance in clinical med-
icine is a daunting challenge, but would have an enormous
impact on both allograft and patient survival. A growing
number of potential therapies provide a rich opportunity for
matching selected interventions to appropriate patients, but
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new insights into clinical stratification through use of bio-
markers are required. International consortia are currently
bringing strategic focus to this task, built upon the philosophy
that diverse immune-mediated diseases, studied as a whole,
will light the path towards immune tolerance.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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