647 research outputs found

    Rapid and Precise Determination of Zero-Field Splittings by Terahertz Time-Domain Electron Paramagnetic Resonance Spectroscopy

    Full text link
    Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g-factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.Comment: 36 pages, 30 figures, 1 tabl

    Neutron rich matter, neutron stars, and their crusts

    Full text link
    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.Comment: 10 pages, 2 figures, Plenary talk International Nuclear Physics Conference 2010, Vancouver, C

    Constraints on Thermal Emission Models of Anomalous X-ray Pulsars

    Get PDF
    Thermal emission from the surface of an ultramagnetic neutron star is believed to contribute significantly to the soft X-ray flux of the Anomalous X-ray Pulsars. We compare the detailed predictions of models of the surface emission from a magnetar to the observed properties of AXPs. In particular, we focus on the combination of their luminosities and energy-dependent pulsed fractions. We use the results of recent calculations for strongly magnetized atmospheres to obtain the angle- and energy-dependence of the surface emission. We include in our calculations the effects of general relativistic photon transport and interstellar extinction. We find that the combination of the large pulsed fractions and the high luminosities of AXPs cannot be accounted for by surface emission from a magnetar with two antipodal hot regions or a temperature distribution characteristic of a magnetic dipole. This result is robust for reasonable neutron star radii, for the range of magnetic field strengths inferred from the observed spin down rates, and for surface temperatures consistent with the spectral properties of AXPs. Models with a single hot emitting region can reproduce the observations, provided that the distance to one of the sources is ~30% less than the current best estimate, and allowing for systematic uncertainties in the spectral fit of a second source. Finally, the thermal emission models with antipodal emission geometry predict a characteristic strong increase of the pulsed fraction with photon energy, which is apparently inconsistent with the current data. The energy-dependence of the pulsed fraction in the models with one hot region shows a wider range of behavior and can be consistent with the existing data. Upcoming high-resolution observations with Chandra and XMM-Newton will provide a conclusive test.Comment: 25 preprint pages, 7 color figures, ApJ, in pres

    Phase diagram of neutron-rich nuclear matter and its impact on astrophysics

    Full text link
    Dense matter as it can be found in core-collapse supernovae and neutron stars is expected to exhibit different phase transitions which impact the matter composition and equation of state, with important consequences on the dynamics of core-collapse supernova explosion and on the structure of neutron stars. In this paper we will address the specific phenomenology of two of such transitions, namely the crust-core solid-liquid transition at sub-saturation density, and the possible strange transition at super-saturation density in the presence of hyperonic degrees of freedom. Concerning the neutron star crust-core phase transition at zero and finite temperature, it will be shown that, as a consequence of the presence of long-range Coulomb interactions, the equivalence of statistical ensembles is violated and a clusterized phase is expected which is not accessible in the grand-canonical ensemble. A specific quasi-particle model will be introduced to illustrate this anomalous thermodynamics and some quantitative results relevant for the supernova dynamics will be shown. The opening of hyperonic degrees of freedom at higher densities corresponding to the neutron stars core modifies the equation of state. The general characteristics and order of phase transitions in this regime will be analyzed in the framework of a self-consistent mean-field approach.Comment: Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Investigation of temporal bone asymmetry in cases with unilateral tinnitus: morphometric and multicentric clinical study

    Get PDF
    The aim of this multicentric study was to compare the anatomical structures of temporal bone in patients with unilateral tinnitus with their healthy ears. We also aimed at evaluating whether age and gender-related asymmetrical changes occur in temporal bones or not. Fifty two ears of 26 patients who had unilateral tinnitus were included into the retrospective study. The patients who had subjective nonpulsatile tinnitus and who previously had temporal computed tomography according to their file records were accepted to study. Temporal CT scans and audiometric results of patients were examined retrospectively. Middle ear volume, diameter of internal acoustic meats and diameter of jugular bulb were evaluated by both anatomist and radiologist, interobserverly. Internal acoustic meats and jugular bulb were found larger in the ears that had tinnitus than healthy ears; however, there was no statistically significance. The stereological morphometrical study of temporal bone asymmetry in humans correlate with sex is of importance for both otolarygologs and anatomists. These results will contribute to data on middle ear volume, internal acustic meats and jugular bulb sizes

    Precise Localization of the Soft Gamma Repeater SGR 1627-41 and the Anomalous X-ray Pulsar AXP 1E1841-045 with Chandra

    Full text link
    We present precise localizations of AXP 1E1841-045 and SGR 1627-41 with Chandra. We obtained new infrared observations of SGR 1627-41 and reanalyzed archival observations of AXP 1E1841-045 in order to refine their positions and search for infrared counterparts. A faint source is detected inside the error circle of AXP 1E1841-045. In the case of SGR 1627-41, several sources are located within the error radius of the X-ray position and we discuss the likelihood of one of them being the counterpart. We compare the properties of our candidates to those of other known AXP and SGR counterparts. We find that the counterpart candidates for SGR 1627-41 and SGR 1806-20 would have to be intrinsically much brighter than AXPs to have detectable counterparts with the observational limits currently available for these sources. To confirm the reported counterpart of SGR 1806-20, we obtained new IR observations during the July 2003 burst activation of the source. No brightening of the suggested counterpart is detected, implying that the counterpart of SGR 1806-20 remains yet to be identified.Comment: 29 pages, 4 figures, accepted for publication in Ap

    Comparative study of electroabsorption in InGaN/GaN quantum zigzag heterostructures with polarization-induced electric fields

    Get PDF
    Cataloged from PDF version of article.We present a comparative study on InGaN/GaN quantum zigzag structures embedded in p-i-n diode architecture that exhibit blue-shifting electroabsorption in the blue when an electric field is externally applied to compensate for the polarization-induced electric field across the wells. With the polarization breaking their symmetry, the same InGaN/GaN quantum structures redshift their absorption edge when the external field is applied in the same direction as the well polarization. Both computationally and experimentally, we investigate the effects of polarization on electroabsorption by varying compositional content and structural parameters and demonstrate that electroabsorption grows stronger with weaker polarization in these multiple quantum well modulators. (c) 2008 American Institute of Physics

    Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase

    Get PDF
    We explore explosions of massive stars, which are triggered via the quark-hadron phase transition during the early post bounce phase of core-collapse supernovae. We construct a quark equation of state, based on the bag model for strange quark matter. The transition between the hadronic and the quark phases is constructed applying Gibbs conditions. The resulting quark-hadron hybrid equations of state are used in core-collapse supernova simulations, based on general relativistic radiation hydrodynamics and three flavor Boltzmann neutrino transport in spherical symmetry. The formation of a mixed phase reduces the adiabatic index, which induces the gravitational collapse of the central protoneutron star. The collapse halts in the pure quark phase, where the adiabatic index increases. A strong accretion shock forms, which propagates towards the protoneutron star surface. Due to the density decrease of several orders of magnitude, the accretion shock turns into a dynamic shock with matter outflow. This moment defines the onset of the explosion in supernova models that allow for a quark-hadron phase transition, where otherwise no explosions could be obtained. The shock propagation across the neutrinospheres releases a burst of neutrinos. This serves as a strong observable identification for the structural reconfiguration of the stellar core. The ejected matter expands on a short timescale and remains neutron-rich. These conditions might be suitable for the production of heavy elements via the r-process. The neutron-rich material is followed by proton-rich neutrino-driven ejecta in the later cooling phase of the protoneutron star where the vp-process might occur.Comment: 29 pages, 24 figures, submitted to Ap
    • …
    corecore