5 research outputs found

    Association between physical activity and risk of hepatobiliary cancers : A multinational cohort study

    Get PDF
    Background & Aims: To date, evidence on the association between physical activity and risk of hepatobiliary cancers has been inconclusive. Weexamined this association in the European Prospective Investigation into Cancer and Nutrition cohort (EPIC). Methods: We identified 275 hepatocellular carcinoma (HCC) cases, 93 intrahepatic bile duct cancers (IHBCs), and 164 non-gallbladder extrahepatic bile duct cancers (NGBCs) among 467,336 EPIC participants (median follow-up 14.9 years). We estimated cause-specific hazard ratios (HRs) for total physical activity and vigorous physical activity and performed mediation analysis and secondary analyses to assess robustness to confounding (e.g. due to hepatitis virus infection). Results: In the EPIC cohort, the multivariable-adjusted HR of HCC was 0.55 (95% CI 0.38-0.80) comparing active and inactive individuals. Regarding vigorous physical activity, for those reporting >2 hours/week compared to those with no vigorous activity, the HR for HCC was 0.50 (95% CI 0.33-0.76). Estimates were similar in sensitivity analyses for confounding. Total and vigorous physical activity were unrelated to IHBC and NGBC. In mediation analysis, waist circumference explained about 40% and body mass index 30% of the overall association of total physical activity and HCC. Conclusions: These findings suggest an inverse association between physical activity and risk of HCC, which is potentially mediated by obesity. Lay summary: In a pan-European study of 467,336 men and women, we found that physical activity is associated with a reduced risk of developing liver cancers over the next decade. This risk was independent of other liver cancer risk factors, and did not vary by age, gender, smoking status, body weight, and alcohol consumption. (C) 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.Peer reviewe

    Morphological and microsatellite DNA diversity of Nigerian indigenous sheep

    No full text
    Abstract Background Sheep is important in the socio-economic lives of people around the world. It is estimated that more than half of our once common livestock breeds are now endangered. Since genetic characterization of Nigerian sheep is still lacking, we analyzed ten morphological traits on 402 animals and 15 microsatellite DNA markers in 384 animals of the 4 Nigerian sheep breeds to better understand genetic diversity for breeding management and germplasm conservation. Results Morphological traits of Uda and Balami were significantly (P FST, FIT and FIS statistics across all loci were 0.088, 0.394 and 0.336 respectively. Yankasa and Balami are the most closely related breeds (DA = 0.184) while WAD and Balami are the farthest apart breeds (DA = 0.665), which is coincident with distance based on morphological analysis and population structure assessed by STRUCTURE. Conclusions These results suggest that within-breed genetic variation in Nigerian sheep is higher than between-breeds and may be a valuable tool for genetic improvement and conservation. The higher genetic variability in Yankasa suggests the presence of unique ancestral alleles reflecting the presence of certain functional genes which may result in better adaptability in more agro-ecological zones of Nigeria. These genetic characteristics are potentially useful in planning improvement and conservation strategies in Nigerian indigenous sheep.</p

    Quantitative datasets reveal marked gender disparities in Earth Sciences faculty rank in Africa

    Get PDF
    As in most disciplines of science, technology, engineering, mathematics and medicine (STEMM), gender disparity is prevalent in the ranking of Earth Sciences faculties at senior and advanced levels. (i.e., Associate and Full Professors). In this study, a robust database was mined, created, and analyzed to assess the faculty compositions of 142 Earth Science departments in 39 countries across Africa. The data were collected from verifiable online resources focusing on ranks and gender ratios within each department. The studied earth science departments cut across universities in northern, southern, central, eastern, and western Africa. Our data revealed that female faculty members are predominantly underrepresented in most of the departments documented and are markedly uncommon in senior positions such as Professors, associate Professors, and senior researchers compared to their male counterparts. On the contrary, female faculty members are predominant in the lower cadres, such as lecturers, teaching, and graduate assistants. The observed male to female ratio is 4:1. At the base of this gender gap is the lower enrolment of female students in Earth Science courses from undergraudate to graduate studies. To achieve gender equality in Earth Science faculty composition in Africa, we recommend increasing female students’ enrollment, mentoring, awareness, timely promotion of accomplished female researchers, and formulation of enabling government policies. More work-related policies that guarantee work-life balance for female earth science academic professionals should be formulated to attract and retain more women into Earth Sciences careers

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore