296 research outputs found

    Targeted therapy in nuclear medicine—current status and future prospects

    Get PDF
    In recent years, a number of new developments in targeted therapies using radiolabeled compounds have emerged. New developments and insights in radioiodine treatment of thyroid cancer, treatment of lymphoma and solid tumors with radiolabeled monoclonal antibodies (mAbs), the developments in the application of radiolabeled small receptor-specific molecules such as meta-iodobenzylguanidine and peptides and the position of locoregional treatment in malignant involvement of the liver are reviewed. The introduction of recombinant human thyroid-stimulating hormone and the possibility to enhance iodine uptake with retinoids has changed the radioiodine treatment protocol of patients with thyroid cancer. Introduction of radiolabeled mAbs has provided additional treatment options in patients with malignant lymphoma, while a similar approach proves to be cumbersome in patients with solid tumors. With radiolabeled small molecules that target specific receptors on tumor cells, high radiation doses can be directed to tumors in patients with disseminated disease. Radiolabeled somatostatin derivatives for the treatment of neuroendocrine tumors are the role model for this approach. Locoregional treatment with radiopharmaceuticals of patients with hepatocellular carcinoma or metastases to the liver may be used in inoperable cases, but may also be of benefit in a neo-adjuvant or adjuvant setting. Significant developments in the application of targeted radionuclide therapy have taken place. New treatment modalities have been introduced in the clinic. The concept of combining therapeutic radiopharmaceuticals with other treatment modalities is more extensively explore

    99mTc-labelled Stealth® liposomal doxorubicin (Caelyx®) in glioblastomas and metastatic brain tumours

    Get PDF
    British Journal of Cancer (2002) 86, 659–660. DOI: 10.1038/sj/bjc/6600093 www.bjcancer.co

    [89Zr]-immuno-PET prediction of response to rituximab treatment in patients with therapy refractory interstitial pneumonitis: a phase 2 trial

    Get PDF
    Introduction: Immune-mediated interstitial pneumonitis may be treated with anti-CD20 therapy after failure of conventional therapies. However, clinical response is variable. It was hypothesized that autoreactive CD20-positive cells may play an important role in this variability. This prospective study aims to elucidate if imaging of CD20-positive cells in the lungs allows prediction of the response to anti-CD20 treatment. Methods: Twenty-one patients with immune-mediated interstitial lung disease (ILD) with deteriorated pulmonary function received a dose of 1000 mg rituximab on day 1 and day 14 spiked with a tracer dose of radiolabeled [89Zr]-rituximab. PET/CT was performed on days 3 and 6. Standardized uptake values (SUV) were calculated as a measure for pulmonary CD20 expression. Based on pulmonary function tests (PFT), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO), prior to and 6 months after treatment, patients were classified as responder (stable disease or improvement) or non-responder. Results: Fifteen patients (71%) were classified as responder. Pulmonary [89Zr]-rituximab PET SUVmean was significantly correlated with the change in FVC and DLCO (K = 0.49 and 0.56, respectively) when using target-to-background ratios, but not when using SUVmean alone. [89Zr]-rituximab SUVmean was significantly higher in responders than in non-responders (0.35 SD 0.09 vs. 0.23 SD 0.06; P = 0.02). Conclusion: Rituximab treatment was effective in the majority of patients. As a higher pulmonary uptake of [89Zr]-rituximab correlated with improvement of PFT and treatment outcome, [89Zr]-rituximab PET imaging may serve as a potential predictive biomarker for anti-CD20 therapy. Trial registration: Clinicaltrials.go

    A model for the compressible, viscoelastic behavior of human amnion addressing tissue variability through a single parameter

    Get PDF
    A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time- dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition

    [F-18]FDG-PET/CT to prevent futile surgery in indeterminate thyroid nodules:a blinded, randomised controlled multicentre trial

    Get PDF
    Purpose To assess the impact of an [F-18]FDG-PET/CT-driven diagnostic workup to rule out malignancy, avoid futile diagnostic surgeries, and improve patient outcomes in thyroid nodules with indeterminate cytology. Methods In this double-blinded, randomised controlled multicentre trial, 132 adult euthyroid patients with scheduled diagnostic surgery for a Bethesda III or IV thyroid nodule underwent [F-18]FDG-PET/CT and were randomised to an [F-18] FDG-PET/CT-driven or diagnostic surgery group. In the [F-18]FDG-PET/CT-driven group, management was based on the [F-18]FDG-PET/CT result: when the index nodule was visually [F-18]FDG-positive, diagnostic surgery was advised; when [F-18]FDG-negative, active surveillance was recommended. The nodule was presumed benign when it remained unchanged on ultrasound surveillance. In the diagnostic surgery group, all patients were advised to proceed to the scheduled surgery, according to current guidelines. The primary outcome was the fraction of unbeneficial patient management in one year, i.e., diagnostic surgery for benign nodules and active surveillance for malignant/borderline nodules. Intention-to-treat analysis was performed. Subgroup analyses were performed for non-Hurthle cell and Hurthle cell nodules. Results Patient management was unbeneficial in 42% (38/91 [95% confidence interval [CI], 32-53%]) of patients in the [F-18] FDG-PET/CT-driven group, as compared to 83% (34/41 [95% CI, 68-93%]) in the diagnostic surgery group (p < 0.001). [F-18]FDG-PET/CT-driven management avoided 40% (25/63 [95% CI, 28-53%]) diagnostic surgeries for benign nodules: 48% (23/48 [95% CI, 33-63%]) in non-Hurthle cell and 13% (2/15 [95% CI, 2-40%]) in I-Liable cell nodules (p = 0.02). No malignant or borderline tumours were observed in patients under surveillance. Sensitivity, specificity, negative and positive predictive value, and benign call rate (95% CI) of [F-18]FDG-PET/CT were 94.1% (80.3-99.3%), 39.8% (30.0-50.2%), 95.1% (83.5-99.4%), 35.2% (25.4-45.9%), and 31.1% (23.3-39.7%), respectively. Conclusion An [F-18]FDG-PET/CT-driven diagnostic workup of indeterminate thyroid nodules leads to practice changing management, accurately and oncologically safely reducing futile surgeries by 40%. For optimal therapeutic yield, application should be limited to non-Hurthle cell nodules
    corecore