247 research outputs found

    Frost-table and Thaw Depths in the Littoral Zone near Peard Bay, Alaska

    Get PDF
    Measurements were made of thaw depths and of sub-surface temperatures along four profiles, between late May and late August. On the upper beach levels, thaw proceeded rapidly following the disappearance of surface snow, but then became much slower. Near the water line, thaw was delayed by the presence of beach-fast ice, but thereafter increased steadily to greater depths than on the upper beach. Greater thaw depths were reached on barrier beaches than on beaches backed by tundra. On the upper beach, thaw depths and zero-degree depths did not differ significantly, but near the water line they were at variance due to the presence of saline pore waters

    Diffractive Dijet Production

    Full text link
    We explore the diffractive interaction of a proton with an anti-proton which results in centrally produced dijets. This process has been recently studied at the Tevatron. We make predictions within an Ingelman-Schlein approach and compare them to the recent data presented by the CDF collaboration. Earlier calculations resulted in theoretical cross-sections which are much larger than those observed by CDF. We find that, after consideration of hadronisation effects and the parton shower, and using parton density functions extracted from diffractive deep inelastic scattering at HERA, it is possible to explain the CDF data. We need to assume a gap survival probability of around 10% and this is in good agreement with the value predicted by theory. We also find that the non-diffractive contribution to the process is probably significant in the kinematical region probed by the Tevatron.Comment: 12 pages, 6 figures, 3 table

    A Model for the Pion Structure Function

    Get PDF
    The pion structure function is investigated in a simple model, where pion and constituent quark fields are coupled through the simplest pseudoscalar coupling. The imaginary part of the forward gamma* pi-> gamma* pi scattering amplitude is evaluated and related to the structure functions. It is shown that the introduction of non-perturbative effects, linked to the size of the pion and preserving gauge invariance, allows a connection with the quark distribution. It is predicted that higher-twist terms become negligible for Q2 larger than about 2 GeV2 and that quarks in the pion have a momentum fraction smaller than in the proton case.Comment: 14 pages, 6 figures, LaTeX, elsart clas

    Dijet Rapidity Gaps in Photoproduction from Perturbative QCD

    Get PDF
    By defining dijet rapidity gap events according to interjet energy flow, we treat the photoproduction cross section of two high transverse momentum jets with a large intermediate rapidity region as a factorizable quantity in perturbative QCD. We show that logarithms of soft gluon energy in the interjet region can be resummed to all orders in perturbation theory. The resummed cross section depends on the eigenvalues of a set of soft anomalous dimension matrices, specific to each underlying partonic process, and on the decomposition of the scattering according to the possible patterns of hard color flow. We present a detailed discussion of both. Finally, we evaluate numerically the gap cross section and gap fraction and compare the results with ZEUS data. In the limit of low gap energy, good agreement with experiment is obtained.Comment: 37 pages, Latex, 17 figure

    Inclusive Dijet Production at HERA: Direct Photon Cross Sections in Next-To-Leading Order QCD

    Get PDF
    We have calculated inclusive two-jet cross sections in next-to-leading order QCD for direct photoproduction in low Q2Q^2 epep collisions at HERA. Infrared and collinear singularities in real and virtual contributions are cancelled with the phase space slicing method. Analytical formulas for the different contributions giving the dependence on the slicing parameter are presented. Various one- and two-jet distributions have been computed demonstrating the flexibility of the method.Comment: 30 pages, latex, 11 figures appended as uuencoded fil

    The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation

    Get PDF
    The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA0 cycles than for qA0 and more sharply peaked for qA0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age

    Boundary work: becoming middle class in suburban Dar es Salaam

    Get PDF
    Suburban space provides a useful window onto contemporary class practices in Africa, where it is difficult to identify social classes on the basis of income or occupation. In this article I argue that the middle classes and the suburbs are mutually constitutive in the Tanzanian city of Dar es Salaam. Using interviews with residents and local government officials in the city's northern suburbs, I discuss the material and representational practices of middle-class boundary work in relation to land and landscape. If the middle classes do not presently constitute a coherent political-economic force, they are nevertheless transforming the city's former northern peri-urban zones into desirable suburban residential neighbourhoods

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
    corecore