23 research outputs found

    Effects of Inert Nanoparticles of High-Melting-Point Compositions on Grain Structure and Strength of Ni[3]Al Intermetallic Compounds

    Get PDF
    The paper represents experimental findings both in the area of effects of nanoparticles of inert high-melting-point TiN compounds on a Ni[3]Al intermetallic grain structure creation in the conditions of high temperature synthesis under pressure, and in the area of impact of grain structure modification on intermetallic compounds' strength factor temperature dependence. It was demonstrated that appending a stoichiometric composition of nanosized particles of high-melting-point inert chemical compounds (TiN) initiates a manyfold loss of average size of grain of Ni[3]Al intermetallic compounds, synthesized under pressure, as well as a sufficient intermetallic compounds' strength rise within a wide range of temperatures (up to 1 000 degree C). Electron-microscopic evaluations of a synthesized intermetallic structure with TiN nanoparticles, showed that, during the process of intermetallic polycrystalline structure creation from high temperature synthesis products melts, TiN nanoparticles are mainly spread throughout the boundaries and joints of grain structure, acting as stoppers of grain boundaries migration

    Influence of the Thermal-force Effect on the Process of Hightemperature Synthesis of the Ni[3]Al Intermetallic Compound

    Get PDF
    In this work, the intermetallic compound Ni[3]Al was obtained by high-temperature synthesis under pressure at various values of the preliminary pressure on the initial powder mixture (3Ni+Al). The study of pressure-time and displacement-time diagrams gave a coherent picture of the synthesis passage over time. It was found that an increase of preliminary pressure leads to a decreasing of the powder compacts porosity. In this regard, the smallest displacement of the press plunger after initiating the synthesis reaction in the powder compact was observed at the highest value of the preliminary pressure on the compact. The role of preliminary pressure on the initial powder mixture in the process of the grain structure formation of the Ni[3]Al intermetallic compound synthesized under pressure was determined

    Impact of High-Temperature, High-Pressure Synthesis Conditions on the Formation of the Grain Structure and Strength Properties of Intermetallic Ni[3]Al

    Get PDF
    The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni[3]Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°С. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°С toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°С increases roughly two-fold

    Bulk nanostructuring intermetallic composite material

    Get PDF
    The article states the results of a study of the impact rendered by the plastic strain occurring in a high-temperature synthesis product during the thermal explosion of a nickel-aluminum powdermixture on the grain structure, strength and ductility of the Ni3Al synthesized intermetallic compound

    Development of multiscale approach to modeling mechanical response of high-strength intermetallic alloys on the basis of movable cellular automaton method

    Get PDF
    On the basis of movable cellular automaton method (MCA) was developed a multiscale two-dimensional structural and rheological model of hard-strength intermetallic alloy Ni3Al. In this model, the intermetallic alloy is regarded as multiscale composite system. Developed approach takes into account the properties of grain boundaries, the characteristics of the geometry and internal structure of the grains and their size distribution. Internal grain structure of hard-strength alloy is constructed in the framework of MCA method using the algorithm of Voronoi tessellation. To simulate the processes of deformation and fracture of such complex systems by MCA method the two-dimensional model of elastic-plastic interaction of cellular automata is used. This model is based on the use of many-particle potentials/forces of interaction of cellular automata. An incremental theory of plasticity of isotropic medium with von Mises plasticity criterion was used to model deformation of intermetallic alloy. Radial return algorithm of Wilkins was adopted for this purpose. Twoparameter criterion of Drucker-Prager was used as fracture criterion in proposed model. When modeling of the mechanical response of hard-strength alloy peculiarities of its multiscale internal structure (the presence of subgrains in grains) at lower scales with respect to the considered one was taken into account implicitly using a specially developed multiscale approach. Verification of the developed model is performed by simulation of tests on the uniaxial tension of Ni3Al samples and comparing the simulation results with the experimental data. Comparison of the obtained “theoretical” loading diagrams with experimental data showed good qualitative and quantitative similarity. This indicates the adequacy of the developed model and the possibility of its use to describe the deformation and fracture of such complex heterogeneous systems

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore