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Abstract. The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the 

duration of the delay in application of compacting pressure to synthesis product under the 

conditions of continuous heating of the mixture up to its self-ignition on the grain size and 

strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain 

structure of the intermetallide synthesized under pressure was studied by means of 

metallography, transmission electron microscopy and EBSD analysis, with the dependence of 

ultimate tensile strength on the grain size in the synthesized intermetallide having been 

investigated at room temperature and at temperatures up to 1000°С. It is shown that an increase 

in the pressure preliminarily applied to the initial mixture compact results in reduced grain size 

of the final intermetallide, whereas an increase in pre-compaction time makes the grain size 

increased. A decrease in the grain size increases the ultimate tensile strength of the 

intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous 

temperature dependence of this strength exhibits a shift by 200°С toward higher temperatures, 

and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold. 

1.  Introduction 

Intermetallic compound Ni3Al provides the basis for a broad spectrum of alloys with improved 

properties intended for use under thermal and force loads as forging dies, turbocompressor and internal-

combustion-engine components, turbine blades in rocket engines, combustion-chamber components, 

heat exchangers, microreactors, etc. [1]. Enhancement of the application efficiency of intermetallic 

compound Ni3Al as the main component of heat-resisting alloys is restricted because of the high 

susceptibility of the material to brittle fracture; indeed, polycrystalline Ni3Al suffers brittle rupture along 

grain boundaries both at low and elevated temperatures [2-5]. Increasing the plasticity and the strength 

of intermetallic compound Ni3Al is possible either via doping of the material with various impurities 

such as boron [6] or via grain-structure refinement [7]. Practical implementation of boron-doping 

process for intermetallides by traditional methods encounters certain difficulties [8], and enhancement 

of the mechanical strength of polycrystalline intermetallide samples via grain-structure refinement 

achieved using severe plastic deformations realized at temperatures as high as the melting point also 

seem to be impossible because of the high brittleness of the intermetallide at equally high temperatures. 

An alternative method for obtaining intermetallic Ni3Al and alloys based on this intermetallide is the 

self-propagating high-temperature synthesis (SHS) of the intermetallic compound in a powder mixture 

of initial elements taken in desired proportion [8-12]. Thermophysical conditions of bulk-uniform 
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synthesis reaction of the intermetallide in the initial powder mixture of pure elements guarantee 

synchronous proceeding of phase transformations throughout the entire volume of the powder sample. 

A unique feature of SHS process is the possibility to consolidate individual structural fragments within 

the synthesis product at the moment the thermo-reacting mixture reaches a homogeneous structural-

phase composition at the stage of material crystallization and grain-structure formation [13]. 

The high rates of phase transformations during the bulk-uniform synthesis reaction in a powder 

mixture of initial elements yielding the intermetallide entail considerable difficulties in controlling the 

formation process of the structural-phase state of the synthesis product. The main drawback of known 

solutions [14,15] hampering the mentioned control is the initiation of high-temperature synthesis of the 

intermetallide in the initial powder mixture in frontal burning mode, followed by subsequent application 

of pressure to the synthesis product after the burning front has already traversed the entire volume of the 

mixture. As a result, during the compaction the synthesis product at its different sections occurs in 

different structural-phase states, and this circumstance does not allow one to obtain a grain structure 

with desired grain sizes in synthesized intermetallide. A solution to this problem can only be gained via 

implementation of synchronization of the bulk-uniform exothermal-reaction processes of intermetallide 

formation in the powder mixture of initial elements with the dynamic compaction of the synthesis 

product.  

In the present publication, we report on the results of a study of the impact of synthesis conditions 

on the structural-phase state and strength properties of the intermetallic compound Ni3Al synthesized 

under pressure from an initial 3Ni+Al powder mixture whose volume was continuously heated until a 

self-ignition followed by subsequent dynamic compaction of the synthesis product was reached.  

2.  Material and methods 

The initial materials used for the high-temperature synthesis of intermetallic Ni3Al samples were 

mixtures of nickel and aluminum powders in which particle sizes ranged in the intervals 1…3 and 5…10 

μm, respectively. The high-temperature synthesis of intermetallic Ni3Al samples in stoichiometric 

powder mixture was conducted under a pressure implemented using an automated hydraulic press. The 

hydraulic press was additionally equipped with a facility for rf heating of the steel mould, with an 

indicator showing the current heating temperature of the powder compact, with a digital manometer that 

was used for monitoring the pressure in the main-press-cylinder hydrosystem, and with a timer serving 

the function of working-stroke initiation (Fig. 1). 

The phase composition of synthesized intermetallide samples was studied by means of the X-ray 

diffraction implemented on a DRON-7 X-ray diffractometer using Co Kα radiation at an accelerating 

voltage of 35 kV and an electron-beam current of 20 mA. The grain structure of the material was 

investigated on a Neophot 32 microscope using intermetallic samples sized 40×15×5 mm (these samples 

were cut out from central parts of the pressure-synthesized pellets). The metallographic sections of the 

samples were prepared by mechanical grinding performed with gradual reduction of diamond abrasive 

size down to 1 μm. The grain structure in the samples was revealed by etching the samples with argon 

ions at an accelerating voltage of 0.6 kV. For evaluation of grain sizes, the random secant technique 

with the averaging performed over 150 measurements was used. 

The TEM study of the material structure was carried out on a JEM-2100 electron microscope at an 

accelerating voltage of 200 kV. Thin foils were prepared using the ion thinning process implemented on 

an EM-09100IS (JEOL) facility at an accelerating voltage of 8 kV. 
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Fig. 1. Schematic of the experimental facility for high-temperature, high-pressure synthesis of 

chemical compounds and alloys based on such compounds to be conducted in thermal explosion mode 

during heating of the initial powder compact in a steel mould: 1- press volume, 2 – main press 

cylinder, 3 – steel mould, 4 – powder compact. 

 

The EBSD analysis of the material structure of the samples was performed on a Quanta 200 3D 

tungsten-hot-cathode microscope operated at an accelerating voltage of 30 kV. The step size was 0.2 

μm. Poor indexed points with the confidence index (CI) values less than 0.1 were discarded from 

consideration. The cross-sectional cuts of the samples under examination were polished electrolytically 

at 10°С temperature and 80-V voltage in an electrolyte of the following composition: CH3COOH – 78%, 

HClO4 – 22%. 

The tensile tests of the intermetallic samples at temperatures 20…1000 °С were performed on LFM-

125 walter + baiag testing machines, Switzerland. The deformation rate during the tests was 3×10-4 s-1, 

the dimensions of the gage parts of the test samples being 10×3×1.2 mm. 

3.  Results and Discussion 

The key parameters of the synthesis process of intermetallic compound Ni3Al held under pressure and 

proceeding through a bulk-uniform exothermal synthesis reaction are the magnitude of the initial load 

applied to the powder mixture of nickel and aluminum and the duration of the delay in application of 

compacting pressure to the synthesis product after ignition of the mixture. Those parameters define the 

formation kinetics of the grain structure in synthesized products. Programming of the values of both 

parameters is based on the control of the load being preliminarily applied to the powder compact in the 

mould exerted using preliminary fixation of a set pressure value in the main-press-cylinder hydrosystem 

and a set duration of the delay in the initiation of the press working stroke used to compact the synthesis 

product. Figure 2a shows a diagram illustrating the variation of the pressure applied to the powder 

compact in the steel mould. This diagram was obtained by recalculating the pressure values in the main-

press-cylinder hydrosystem in coordinates “pressure-time” over the entire cycle of the high-temperature 

synthesis process of the intermetallide in the powder mixture continuously heated in the steel mould. At 

an initial pressure Pо implemented during continuous heating of the mixture, the plastic deformation of 

the powder compact, the melting of the aluminum component, and the initiation of the exothermal 

synthesis reaction all resulted in a reduction of the pressure applied to the powder compact down to a 

pressure Р1. Further scenario implies either an immediate compaction of the synthesis product under the 

pressure Р2 implemented due to initiated press working stroke or preliminary storage of the mixture 

during some time under pressure P1 with subsequent compaction of the synthesis product. Figure 2b 

shows the experimental time dependences of the pressure applied to the powder compact being 
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continuously heated in the steel mould until reaching self-ignition with various pre-compaction times. 

In accordance with the indicated regimes of the high-temperature synthesis of the intermetallide under 

pressure, intermetallic Ni3Al samples were obtained at different magnitudes of the preliminary load 

exerted on the initial powder mixture and at different times during which the synthesized product was 

held prior to the moment of its compaction. 

  
Fig. 2. A diagram of pressures applied to 3Ni+Al powder compact plotted in coordinates “pressure-

time” over the entire process cycle of the high-temperature synthesis of Ni3Al intermetallic 

compound from an initial powder compact being continuously heated under a preliminary load in 

the steel mould with a time delay in application of compacting pressure (a) and experimentally 

obtained diagrams illustrating the variation of pressure during the entire programmed cycle of the 

synthesis process of Ni3Al intermetallide under continuous heating of the powder mixture 

implemented with various pre-compaction times (b). 

3.1.  Impact of the magnitude of the preliminary load on the phase composition and grain size in the 

pressure-synthesized Ni3Al intermetallide 

X-ray data obtained for intermetallic Ni3Al samples synthesized at extreme pressure values in the 

examined range of initial pressures applied to the powder compact, 33 and 115 MPa, without any delay 

in time in application of the minimum compacting pressure (diffractograms 1 and 2, respectively) are 

shown in Fig. 3. 

 

 
 

Fig. 3. Diffractograms of intermetallic Ni3Al samples synthesized under pressure from an initial 

powder mixture continuously heated in the steel mould at different pressures applied to the 3Ni+Al 

powder compact, 33 MPa (diffractogram 1) and 115 MPa (diffractogram 2) with zero pre-

compaction time. 
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A comparison between the diffractograms of Fig. 3 shows that the change in the magnitude of the 

initial pressure applied to the initial powder mixture does not affect the phase composition of the 

synthesized intermetallic samples, - in both cases, the phase composition corresponds to the intermetallic 

compound Ni3Al. 

The change in the magnitude of the initial pressure has an impact on the grain size of the pressure-

synthesized Ni3Al intermetallide. Figure 4 shows the general appearance of the grain structure in 

intermetallic Ni3Al samples synthesized under pressure at different values of the pressure that was 

preliminarily applied to the initial powder compact kept in the mould. Numerical estimations of the 

dependence of the grain sizes in the pressure-synthesized intermetallide samples show that, with 

increasing the initial pressure, the grain size in synthesized intermetallides diminishes from 8.5 µm down 

to 1.5 µm (see Fig. 5). 

 

  

 

Fig. 4. The grain structure of intermetallic Ni3Al samples synthesized under pressure at different 

values of the pressure that was preliminarily applied to the initial powder mixture: 

 a – Po= 33 MPa, b – Po= 76 MPa, c – Po= 115 MPa. 

 
Fig. 5. The average grain size in the pressure-synthesized intermetallic Ni3Al samples versus the 

magnitude of the pressure preliminarily applied to the initial powder mixture. 

 

The TEM study of the microstructure of pressure-synthesized Ni3Al intermetallides and their EBSD 

analysis have confirmed the data gained while performing the metallographic study of the grain 
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structure, - it was found that the grain sizes in the grain structure formed in the intermetallide under 

preliminary 115-MPa loading of the initial powder mixture fell into the micrometer range (see Fig. 6). 

 

 

 

Fig. 6. The grain structure of the intermetallic Ni3Al synthesized under pressure at 115-MPa pressure 

preliminarily applied to the initial powder mixture (as revealed by TEM) (a) and the inverse pole 

figure demonstrating the grain structure of the intermetallide. The black and red lines show the high-

angle and low-angle boundaries, respectively (b). 

3.2.  Impact of pre-compaction time on the phase composition and grain size in pressure-synthesized 

Ni3Al intermetallide 

Diffractograms of intermetallic Ni3Al samples synthesized under pressure at different pre-compaction 

times are shown in Fig. 7.  

 

 

Fig. 7. Diffractograms of intermetallic Ni3Al samples synthesized under pressure at different pre-

compaction times: 1 – 0 s, 2 – 0.5 s, 3 – 1.0 s, 4 – 1.5 s, 5 – 2.0 s. 
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The increase in pre-compaction time from 0 to 2.0 s has no influence on the phase composition of 

the synthesized intermetallic material, - indeed, the intermetallides synthesized at all pre-compaction 

times presented a single-phase Ni3Al product. However, with increasing the pre-compaction time the 

average grain size of the intermetallide clearly increases (see Figs. 8 and 9). 

 

 
 

 

 

Fig. 8. The grain structure of intermatallic Ni3Al samples synthesized under pressure at different  

pre-compaction times: a – 0 s, b – 1 s, c – 2 s. 

 

Fig. 9. The grain size in intermetallic Ni3Al samples synthesized under pressure versus  

the pre-compaction time. 

3.3.  Impact of grain sizes on the strength properties of pressure-synthesized Ni3Al intermetallides 

The variation of grain sizes largely affects the strength properties of pressure-synthesized Ni3Al 

intermetallides. The ultimate strength of intermetallides under tension versus the grain size in the 

material and the temperature dependences of the ultimate tensile strengths in the materials with grain 

sizes 1.2 µm and 8.5 µm are shown in Fig. 10 (a and b, respectively). 
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Fig. 10. The ultimate tensile strength of pressure-synthesized Ni3Al intermetallides versus the grain 

size (a) and versus the temperature at which the tests were performed (in the materials with  

grain sizes 8.5 µm (green) and 1.2 µm (red) (b).  

 

The decrease of the grain size in pressure-synthesized Ni3Al intermetallides from 8.5 down to 1.2 

µm increases the ultimate strength of the intermetallide under tension from 336 to 482 MPa (i.e., by a 

factor of 1.4). In the temperature dependence, the maximum ultimate strength increases from 538 to 583 

MPa, and it exhibits a shift by 200 °С toward higher temperatures. At a temperature of 1000 °С, the 

ultimate strength of the intermetallide under tension increases from 90 to 178 MPa (i.e. roughly two-

fold). 

4.  Conclusion 

Programming of main process parameters of the high-temperature, high pressure synthesis of Ni3Al 

intermetallide under continuous heating of the initial 3Ni+Al powder mixture prior to reaching its self-

ignition provides an efficient means for controlling the formation process of the grain structure in the 

synthesized intermetallides. Indeed, an increase in pre-compaction pressure decreases the grain size in 

the synthesized intermetallide. On the contrary, an increase in pre-compaction time increases the grain 

size in the synthesized product. 

A decrease in the grain size increases the room-temperature ultimate strength of the intermetallide 

under tension. The maximum ultimate tensile strength of the intermetallide in the anomalous 

temperature dependence of this strength exhibits a shift by 200 °С toward higher temperatures, and the 

ultimate tensile strength of the intermetallide at a temperature of 1000 °C shows roughly a two-fold 

increase. 
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