52 research outputs found

    The effect of a probiotic blend on gastrointestinal symptoms in constipated patients: A double blind, randomised, placebo controlled 2-week trial

    Get PDF
    Selected strains of lactobacilli and bifidobacteria are known to ameliorate constipation-related symptoms and have previously shown efficacy on digestive health. In this clinical trial, the safety and effectiveness of a probiotic blend containing lactobacilli and bifidobacteria were evaluated in adults with self-reported bloating and functional constipation. Constipation was diagnosed by the Rome III criteria. A total of 156 adults were randomised into this double-blind and placebo-controlled trial. Participants consumed the combination of Lactobacillus acidophilus NCFM (1010 cfu), Lactobacillus paracasei Lpc-37 (2.5×109 cfu), Bifidobacterium animalis subsp. lactis strains Bl-04 (2.5×109 cfu), Bi-07 (2.5×109 cfu) and HN019 (1010 cfu) (n=78), or placebo (microcrystalline cellulose) (n=78) for two weeks. After treatment the following were measured: primary outcome of bloating and secondary outcomes of colonic transit time, bowel movement frequency, stool consistency, other gastrointestinal symptoms (flatulence, abdominal pain, and burbling), constipation-related questionnaires (PAC-SYM and PAC-QoL) and product satisfaction. Faecal recovery of consumed strains was determined. The enrolled population was defined as constipated, however, the initial bloating severity was lower than in previous similar studies. No clinically significant observations related to the safety of the product were reported. Product efficacy was not shown in the primary analysis for bloating nor for the secondary efficacy analyses. The placebo functioned similarly as the probiotic product. In post-hoc analysis, a statistically significant decrease in flatulence in favour of the probiotic group was observed; day 7 (intention-to-treat (ITT): P=0.0313; per-protocol (PP): 0.0253) and on day 14 (ITT: P=0.0116; PP: P=0.0102) as measured by area under the curve (AUC) analysis. The mean AUC of all symptoms decreased in favour of the probiotic group, indicating less digestive discomfort. The study was registered at the ISRCTN registry (ISRCTN41607808)

    Bifidobacterium animalis subsp lactis HN019 presents antimicrobial potential against periodontopathogens and modulates the immunological response of oral mucosa in periodontitis patients

    Get PDF
    Objective To evaluate the effects of Bifidobacterium animalis subsp. lactis HN019 (HN019) on clinical periodontal parameters (plaque accumulation and gingival bleeding), on immunocompetence of gingival tissues [expression of beta-defensin (BD)-3, toll-like receptor 4 (TLR4), cluster of differentiation(CD)-57 and CD-4], and on immunological properties of saliva (IgA levels) in non-surgical periodontal therapy in generalized chronic periodontitis (GCP) patients. Adhesion to buccal epithelial cells (BEC) and the antimicrobial properties of HN019 were also investigated. Materials and methods Thirty patients were recruited and monitored clinically at baseline (before scaling and root planing—SRP) and after 30 and 90 days. Patients were randomly assigned to Test (SRP+Probiotic, n = 15) or Control (SRP+Placebo, n = 15) group. Probiotic lozenges were used for 30 days. Gingival tissues and saliva were immunologically analyzed. The adhesion of HN019 with or without Porphyromonas gingivalis in BEC and its antimicrobial properties were investigated in in vitro assays. Data were statistically analyzed (p</p

    Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration

    Get PDF
    Research on gut microbiota has generally focused on fecal samples, representing luminal content of the large intestine. However, nutrient uptake is restricted to the small intestine. Abundant immune cell populations at this anatomical site combined with diminished mucus secretion and looser junctions (partly to allow for more efficient fluid and nutrient absorption) also results in intimate host-microbe interactions despite more rapid transit. It is thus crucial to dissect key differences in both ecology and physiology between small and large intestine to better leverage the immense potential of human gut microbiota imprinting, including probiotic engraftment at biological sensible niches. Here, we provide a detailed review unfolding how the physiological and anatomical differences between the small and large intestine affect gut microbiota composition, function, and plasticity. This information is key to understanding how gut microbiota manipulation, including probiotic administration, may strain-dependently transform host-microbe interactions at defined locations

    Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis

    Get PDF
    Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P&lt;5 × 10(-8)) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease

    Common variants near MC4R are associated with fat mass, weight and risk of obesity.

    Get PDF
    To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits
    corecore