1,382 research outputs found

    Ytterbium-doped Fiber-seeded Thin-disk Master Oscillator Power Amplifier Laser System

    Get PDF
    Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 μm ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. Temporal tailoring and spectral control are performed in the low power fiber portion of the system with the high pulse energy being generated in the regenerative amplifier. The seed system consists of a 1030 nm fiber-coupled diode, which is transmitted through a Mach-Zehnder-type modulator in order to temporally vary the pulse shape. Typical pulses are 20-30 ns in duration and have energies of ~0.2 nJ from the modulator. These are amplified in a fiber pre-amplifier stage to ~100 nJ before being used to seed the free-space Yb:YAG thin-disk regenerative amplifier. Output pulses have maximum demonstrated pulse energies of 62 mJ with 20 ns pulse after ~250 passes in the cavity. The effects of thermal distortion in laser and passive optical materials are also. Generally the development of high power and high energy lasers is limited by thermal management strategies, as thermally-induced distortions can degrade laser performance and potentially cause catastrophic damage. Novel materials, such as optical ceramics, can be used to mitigate thermal distortions; however, thorough analysis is required to optimize their fabrication and minimize thermal distortions. iv Using a Shack-Hartmann wavefront sensor (SHWFS), it is possible to analyze the distortion induced in passive and doped optical elements by high power lasers. For example, the thin-disk used in the regenerative amplifier is examined in-situ during CW operation (up to 2 kW CW pump power). Additionally, passive oxide-based optical materials and Yb:YAG optical ceramics are also examined by pumping at 2 and 1 μm respectively to induce thermal distortions which are analyzed with the SHWFS. This method has been developed as a diagnostic for the relative assessment of material quality, and to grade differences in ceramic laser materials associated with differences in manufacturing processes and/or the presence of impurities. In summation, this dissertation presents a high energy 1 μm laser system which is novel in its combination of energy level and temporal tailoring, and an analysis of thermal distortions relevant to the development of high power laser systems

    Computational study of the mechanism of Bcl-2 apoptotic switch

    Full text link
    Programmed cell death - apoptosis is one of the most studied biological phenomenon of recent years. Apoptotic regulatory network contains several significant control points, including probably the most important one - Bcl--2 apoptotic switch. There are two proposed hypotheses regarding its internal working - the indirect activation and direct activation models. Since these hypotheses form extreme poles of full continuum of intermediate models, we have constructed more general model with these two models as extreme cases. By studying relationship between model parameters and steady-state response ultrasensitivity we have found optimal interaction pattern which reproduces behavior of Bcl-2 apoptotic switch. Our results show, that stimulus-response ultrasensitivity is negatively related to spontaneous activation of Bcl-2 effectors - subgroup of Bcl-2 proteins. We found that ultrasensitivity requires effector's activation, mediated by another subgroup of Bcl-2 proteins - activators. We have shown that the auto-activation of effectors forms ultrasensitivity enhancing feedback loop, only if mediated by monomers, but not by oligomers. Robustness analysis revealed that interaction pattern proposed by direct activation hypothesis is able to conserve stimulus-response dependence and preserve ultrasensitivity despite large changes of its internal parameters. This ability is strongly reduced as for the intermediate to indirect side of the models. Computer simulation of the more general model presented here suggest, that stimulus-response ultrasensitivity is an emergent property of the direct activation model, that cannot originate within model of indirect activation. Introduction of indirect-model-specific interactions does not provide better explanation of Bcl-2 functioning compared to direct model

    Low-temperature properties of the heavy-fermion system U Cd

    Full text link
    We present electrical-resistivity, magnetic-susceptibility, specific-heat, and thermal-expansion data for UCd11. The low-temperature specific heat indicates that the electronic subsystem has a highly enhanced specific heat which is partially removed by a phase transition at 5.0 K. © 1984 The American Physical Society

    3D chaotic model for sub-grid turbulent dispersion in Large Eddy Simulations

    Full text link
    We introduce a 3D multiscale kinematic velocity field as a model to simulate Lagrangian turbulent dispersion. The incompressible velocity field is a nonlinear deterministic function, periodic in space and time, that generates chaotic mixing of Lagrangian trajectories. Relative dispersion properties, e.g. the Richardson's law, are correctly reproduced under two basic conditions: 1) the velocity amplitudes of the spatial modes must be related to the corresponding wavelengths through the Kolmogorov scaling; 2) the problem of the lack of "sweeping effect" of the small eddies by the large eddies, common to kinematic simulations, has to be taken into account. We show that, as far as Lagrangian dispersion is concerned, our model can be successfully applied as additional sub-grid contribution for Large Eddy Simulations of the planetary boundary layer flow

    How does flow in a pipe become turbulent?

    Full text link
    The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by three-dimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We will also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.Comment: for the proceedings of statphys 2

    Magnetic Field and Pressure Phase Diagrams of Uranium Heavy-Fermion Compound U2_2Zn17_{17}

    Full text link
    We have performed magnetization measurements at high magnetic fields of up to 53 T on single crystals of a uranium heavy-fermion compound U2_2Zn17_{17} grown by the Bridgman method. In the antiferromagnetic state below the N\'{e}el temperature TNT_{\rm N} = 9.7 K, a metamagnetic transition is found at HcH_c \simeq 32 T for the field along the [112ˉ\bar{2}0] direction (aa-axis). The magnetic phase diagram for the field along the [112ˉ\bar{2}0] direction is given. The magnetization curve shows a nonlinear increase at HmH_m \simeq 35 T in the paramagnetic state above TNT_{\rm N} up to a characteristic temperature TχmaxT_{{\chi}{\rm max}} where the magnetic susceptibility or electrical resistivity shows a maximum value. This metamagnetic behavior of the magnetization at HmH_m is discussed in comparison with the metamagnetic magnetism of the heavy-fermion superconductors UPt3_3, URu2_2Si2_2, and UPd2_2Al3_3. We have also carried out high-pressure resistivity measurement on U2_2Zn17_{17} using a diamond anvil cell up to 8.7 GPa. Noble gas argon was used as a pressure-transmitting medium to ensure a good hydrostatic environment. The N\'{e}el temperature TNT_{\rm N} is almost pressure-independent up to 4.7 GPa and starts to increase in the higher-pressure region. The pressure dependences of the coefficient of the T2T^2 term in the electrical resistivity AA, the antiferromagnetic gap Δ\Delta, and the characteristic temperature TρmaxT_{{\rho}{\rm max}} are discussed. It is found that the effect of pressure on the electronic states in U2_2Zn17_{17} is weak compared with those in the other heavy fermion compounds

    The underscreened Kondo effect: a two S=1 impurity model

    Full text link
    The underscreened Kondo effect is studied within a model of two impurities S=1 interacting with the conduction band and via an interimpurity coupling KS1.S2K\vec{S_1}.\vec{S_2}. Using a mean-field treatment of the bosonized Hamiltonian, we show that there is no phase transition, but a continuous cross-over versus K from a non Kondo behaviour to an underscreened Kondo one. For a small antiferromagnetic coupling (K>0), a completely asymmetric situation is obtained with one s=1/2{1/2} component strongly screened by the Kondo effect and the other one almost free to yield indirect magnetism, which shows finally a possible coexistence between a RKKY interaction and a local Kondo effect, as observed in Uranium compounds such as UPt3UPt_3.Comment: 27 pages, RevTeX, to be published in PR
    corecore