38 research outputs found

    Experimental Lagrangian structure functions in turbulence

    Get PDF
    Lagrangian properties obtained from a Particle Tracking Velocimetry experiment in a turbulent flow at intermediate Reynolds number are presented. Accurate sampling of particle trajectories is essential in order to obtain the Lagrangian structure functions and to measure intermittency at small temporal scales. The finiteness of the measurement volume can bias the results significantly. We present a robust way to overcome this obstacle. Despite no fully developed inertial range we observe strong intermittency at the scale of dissipation. The multifractal model is only partially able to reproduce the results.Comment: 12 pages (two column format). This is version two of the paper. Notice that the title has change

    Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling

    Get PDF
    Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron

    The ecological role of ponds in a changing world

    Get PDF
    The fifth conference of the European Pond Conservation Network (Luxembourg, June 2012) brought together researchers, environmental managers, and other stakeholders with the aim to share stateof-the-art knowledge on the ecology, management, and conservation of ponds in the context of the many challenges facing the wider water environment. Although well-known ecological patterns apply to most ponds in Europe and elsewhere, recent data highlight that part of the environmental variables governing pond biodiversity remain specific to climatic/ biogeographic regions and to elevation ranges, suggesting that, in addition to common practice, management plans should include range-specific measures. Beyond the contribution of individual ponds to the aquatic and terrestrial life, connected networks of ponds are vital in the provision of new climate space as a response to global climate change, by allowing the observed northward and/or upward movements of species. In terms of services, ponds offer sustainable solutions to key issues of water management and climate change such as nutrient retention, rainfall interception, or carbon sequestration. While the ecological role of ponds is now well established, authoritative research-based advice remains needed to inform future direction in the conservation of small water bodies and to further bridge the gap between science and practice

    The ecological role of ponds in a changing world

    Get PDF
    The fifth conference of the European Pond Conservation Network (Luxembourg, June 2012) brought together researchers, environmental managers, and other stakeholders with the aim to share stateof-the-art knowledge on the ecology, management, and conservation of ponds in the context of the many challenges facing the wider water environment. Although well-known ecological patterns apply to most ponds in Europe and elsewhere, recent data highlight that part of the environmental variables governing pond biodiversity remain specific to climatic/ biogeographic regions and to elevation ranges, suggesting that, in addition to common practice, management plans should include range-specific measures. Beyond the contribution of individual ponds to the aquatic and terrestrial life, connected networks of ponds are vital in the provision of new climate space as a response to global climate change, by allowing the observed northward and/or upward movements of species. In terms of services, ponds offer sustainable solutions to key issues of water management and climate change such as nutrient retention, rainfall interception, or carbon sequestration. While the ecological role of ponds is now well established, authoritative research-based advice remains needed to inform future direction in the conservation of small water bodies and to further bridge the gap between science and practice

    Synthesis of real world drone signals based on lab recordings

    No full text
    There is a great interest in the generation of plausible drone signals in various applications, e.g. for auralization purposes or the compilation of training data for detection algorithms. Here, a methodology is presented which synthesises realistic immission signals based on laboratory recordings and subsequent signal processing. The transformation of a lab drone signal into a virtual field microphone signal has to consider a constant pitch shift to adjust for the manoeuvre specific rotational speed and the corresponding frequency dependent emission strength correction, a random pitch shift variation to account for turbulence induced rotational speed variations in the field, Doppler frequency shift and time and frequency dependent amplitude adjustments according to the different propagation effects. By evaluation of lab and field measurements, the relevant synthesizer parameters were determined. It was found that for the investigated set of drone types, the vertical radiation characteristics can be successfully described by a generic frequency dependent directivity pattern. The proposed method is applied to different drone models with a total weight between 800 g and 3.4 kg and is discussed with respect to its abilities and limitations comparing both, recordings taken in the lab and the field

    Near-Infrared High-Resolution Real-Time Omnidirectional Imaging Platform for Drone Detection

    No full text
    Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).(1) Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.(2) In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015

    Synthesis of real world drone signals based on lab recordings

    Get PDF
    There is a great interest in the generation of plausible drone signals in various applications, e.g. for auralization purposes or the compilation of training data for detection algorithms. Here, a methodology is presented which synthesises realistic immission signals based on laboratory recordings and subsequent signal processing. The transformation of a lab drone signal into a virtual field microphone signal has to consider a constant pitch shift to adjust for the manoeuvre specific rotational speed and the corresponding frequency dependent emission strength correction, a random pitch shift variation to account for turbulence induced rotational speed variations in the field, Doppler frequency shift and time and frequency dependent amplitude adjustments according to the different propagation effects. By evaluation of lab and field measurements, the relevant synthesizer parameters were determined. It was found that for the investigated set of drone types, the vertical radiation characteristics can be successfully described by a generic frequency dependent directivity pattern. The proposed method is applied to different drone models with a total weight between 800 g and 3.4 kg and is discussed with respect to its abilities and limitations comparing both, recordings taken in the lab and the field
    corecore