530 research outputs found

    Influence of obesity-related risk factors in the aetiology of glioma

    Get PDF
    BACKGROUND: Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse causation. METHODS: Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal relationship. RESULTS: No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio, lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between obesity-related traits with subtypes of glioma-glioblastoma (GBM) or non-GBM tumours. CONCLUSIONS: This study provides no evidence to implicate obesity-related factors as causes of glioma

    Second surgery for progressive glioblastoma: a multi‐centre questionnaire and cohort‐based review of clinical decision‐making and patient outcomes in current practice

    Get PDF
    PURPOSE: Glioblastoma prognosis is poor. Treatment options are limited at progression. Surgery may benefit, but no quality guidelines exist to inform patient selection. We sought to describe variations in surgical management at progression, highlight where further evidence is needed, and build towards a consensus strategy. METHODS: Current practice in selection of patients with progressive GBM for second surgery was surveyed online amongst specialists in the UK and Europe. We complemented this with an assessment of practice in a retrospective cohort study from six United Kingdom neurosurgical units. We used descriptive statistics to analyse the data. RESULTS: 234 questionnaire responses were received. Maintaining or improving patient quality of life was key to decision making, with variation as to whether patient age, performance status or intended extent of resection was relevant. MGMT methylation status was not important. Half considered no minimum time after first surgery. 288 patients were reported in the cohort analysis. Median time to second surgery from first surgery 390 days. Median overall survival 815 days, with no association between time to second surgery and time to death (p = 0.874). CONCLUSIONS: This is the most wide-ranging examination of contemporaneous practice in management of GBM progression. Without evidence-based guidelines, the variation is unsurprising. We propose consensus guidelines for consideration, to reduce heterogeneity in decision making, support data collection and analysis of factors influencing outcomes, and to inform clinical trials to establish whether second surgery improves patient outcomes, or simply selects to patients already performing well

    High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response

    Get PDF
    Abstract The elucidation of mechanisms involved in resistance to therapies is essential to improve the survival of patients with malignant gliomas. A major feature possessed by glioma cells that may aid their ability to survive therapy and reconstitute tumors is the capacity for self-renewal. We show here that glioma stem cells (GSCs) express low levels of MKP1, a dual-specificity phosphatase, which acts as a negative inhibitor of JNK, ERK1/2, and p38 MAPK, while induction of high levels of MKP1 expression are associated with differentiation of GSC. Notably, we find that high levels of MKP1 correlate with a subset of glioblastoma patients with better prognosis and overall increased survival. Gain of expression studies demonstrated that elevated MKP1 impairs self-renewal and induces differentiation of GSCs while reducing tumorigenesis in vivo. Moreover, we identified that MKP1 is epigenetically regulated and that it mediates the anti-tumor activity of histone deacetylase inhibitors (HDACIs) alone or in combination with temozolomide. In summary, this study identifies MKP1 as a key modulator of the interplay between GSC self-renewal and differentiation and provides evidence that the activation of MKP1, through epigenetic regulation, might be a novel therapeutic strategy to overcome therapy resistance in glioblastoma

    3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors.

    Get PDF
    Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells\u27 transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression

    Transcriptome-Wide Association Study Identifies New Candidate Susceptibility Genes for Glioma.

    Full text link
    Genome-wide association studies (GWAS) have so far identified 25 loci associated with glioma risk, with most showing specificity for either glioblastoma (GBM) or non-GBM tumors. The majority of these GWAS susceptibility variants reside in noncoding regions and the causal genes underlying the associations are largely unknown. Here we performed a transcriptome-wide association study to search for novel risk loci and candidate causal genes at known GWAS loci using Genotype-Tissue Expression Project (GTEx) data to predict cis -predicted gene expression in relation to GBM and non-GBM risk in conjunction with GWAS summary statistics on 12,488 glioma cases (6,183 GBM and 5,820 non-GBM) and 18,169 controls. Imposing a Bonferroni-corrected significance level of P < 5.69 × 10 -6 , we identified 31 genes, including GALNT6 at 12q13.33, as a candidate novel risk locus for GBM (mean Z = 4.43; P = 5.68 × 10 -6 ). GALNT6 resides at least 55 Mb away from any previously identified glioma risk variant, while all other 30 significantly associated genes were located within 1 Mb of known GWAS-identified loci and were not significant after conditioning on the known GWAS-identified variants. These data identify a novel locus ( GALNT6 at 12q13.33) and 30 genes at 12 known glioma risk loci associated with glioma risk, providing further insights into glioma tumorigenesis. SIGNIFICANCE: This study identifies new genes associated with glioma risk, increasing understanding of how these tumors develop

    Genome-wide association study identifies multiple susceptibility loci for glioma

    Get PDF
    Previous genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of glioma. To identify new glioma susceptibility loci, we conducted a meta-analysis of four GWAS (totalling 4,147 cases and 7,435 controls), with imputation using 1000 Genomes and UK10K Project data as reference. After genotyping an additional 1,490 cases and 1,723 controls we identify new risk loci for glioblastoma (GBM) at 12q23.33 (rs3851634, near POLR3B, P=3.02 × 10−9) and non-GBM at 10q25.2 (rs11196067, near VTI1A, P=4.32 × 10−8), 11q23.2 (rs648044, near ZBTB16, P=6.26 × 10−11), 12q21.2 (rs12230172, P=7.53 × 10−11) and 15q24.2 (rs1801591, near ETFA, P=5.71 × 10−9). Our findings provide further insights into the genetic basis of the different glioma subtypes
    corecore