71 research outputs found
Modelling clumpy PDRs in 3D - Understanding the Orion Bar stratification
Context. Models of photon-dominated regions (PDRs) still fail to fully
reproduce some of the observed properties, in particular the combination of the
intensities of different PDR cooling lines together with the chemical
stratification, as observed e.g. for the Orion Bar PDR. Aims. We aim to
construct a numerical PDR model, KOSMA-\tau 3D, to simulate full spectral cubes
of line emission from arbitrary PDRs in three dimensions (3D). The model is to
reproduce the intensity of the main cooling lines from the Orion Bar PDR and
the observed layered structure of the different transitions. Methods. We build
up a 3D compound, made of voxels ("3D pixels") that contain a discrete mass
distribution of spherical "clumpy" structures, approximating the fractal ISM.
To analyse each individual clump the new code is combined with the KOSMA-\tau
PDR model. Probabilistic algorithms are used to calculate the local FUV flux
for each voxel as well as the voxel-averaged line emissivities and optical
depths, based on the properties of the individual clumps. Finally, the
computation of the radiative transfer through the compound provides full
spectral cubes. To test the new model we try to simulate the structure of the
Orion Bar PDR and compare the results to observations from HIFI/Herschel and
from the Caltech Submillimetre Observatory (CSO). In this context new Herschel
data from the HEXOS guaranteed-time key program is presented. Results. Our
model is able to reproduce the line integrated intensities within a factor 2.5
and the observed stratification pattern within 0.016 pc for the [Cii] 158 \mu m
and different 12/13 CO and HCO+ transitions, based on the representation of the
Orion Bar PDR by a clumpy edge-on cavity wall. In the cavity wall, a large
fraction of the total mass needs to be contained in clumps. The mass of the
interclump medium is constrained by the FUV penetration. Furthermore, ...Comment: Major changes compared to v1. Also several references have been adde
The link between gas and stars in the S254-S258 star-forming region
The paper aims to study relation between the distributions of the young stellar objects (YSOs) of different ages and the gas-dust constituents of the S254-S258 star formation complex. This is necessary to study the time evolution of the YSO distribution with respect to the gas and dust compounds that are responsible for the birth of the young stars. For this purpose, we use correlation analysis between different gas, dust, and YSO tracers. We compared the large-scale CO, HCO+, near-IR extinction, and far-IR Herschel maps with the density of YSOs of the different evolutionary classes. The direct correlation analysis between these maps was used together with the wavelet-based spatial correlation analysis. This analysis reveals a much tighter correlation of the gas-dust tracers with the distribution of class I YSOs than with that of class II YSOs. We argue that class I YSOs that were initially born in the central bright cluster S255-IR (both N and S parts) during their evolution to class II stage (similar to 2 Myr) had enough time to travel through the whole S254-S258 star formation region. Given that the region contains several isolated YSO clusters, the evolutionary link between these clusters and the bright central S255-IR (N and S) cluster can be considered. Despite the complexity of the YSO cluster formation in the non-uniform medium, the clusters of class II YSOs in the S254-258 star formation region can contain objects born in the different locations of the complex.Peer reviewe
The first CO+ image: Probing the HI/H2 layer around the ultracompact HII region Mon R2
The CO+ reactive ion is thought to be a tracer of the boundary between a HII
region and the hot molecular gas. In this study, we present the spatial
distribution of the CO+ rotational emission toward the Mon R2 star-forming
region. The CO+ emission presents a clumpy ring-like morphology, arising from a
narrow dense layer around the HII region. We compare the CO+ distribution with
other species present in photon-dominated regions (PDR), such as [CII] 158 mm,
H2 S(3) rotational line at 9.3 mm, polycyclic aromatic hydrocarbons (PAHs) and
HCO+. We find that the CO+ emission is spatially coincident with the PAHs and
[CII] emission. This confirms that the CO+ emission arises from a narrow dense
layer of the HI/H2 interface. We have determined the CO+ fractional abundance,
relative to C+ toward three positions. The abundances range from 0.1 to
1.9x10^(-10) and are in good agreement with previous chemical model, which
predicts that the production of CO+ in PDRs only occurs in dense regions with
high UV fields. The CO+ linewidth is larger than those found in molecular gas
tracers, and their central velocity are blue-shifted with respect to the
molecular gas velocity. We interpret this as a hint that the CO+ is probing
photo-evaporating clump surfaces.Comment: The main text has 4 pages, 2 pages of Appendix, 4 figures, 1 table.
Accepted for publication in Astronomy and Astrophysics letter
The ionized and hot gas in M17 SW: SOFIA/GREAT THz observations of [C II] and 12CO J=13-12
With new THz maps that cover an area of ~3.3x2.1 pc^2 we probe the spatial
distribution and association of the ionized, neutral and molecular gas
components in the M17 SW nebula. We used the dual band receiver GREAT on board
the SOFIA airborne telescope to obtain a 5'.7x3'.7 map of the 12CO J=13-12
transition and the [C II] 158 um fine-structure line in M17 SW and compare the
spectroscopically resolved maps with corresponding ground-based data for low-
and mid-J CO and [C I] emission. For the first time SOFIA/GREAT allow us to
compare velocity-resolved [C II] emission maps with molecular tracers. We see a
large part of the [C II] emission, both spatially and in velocity, that is
completely non-associated with the other tracers of photon-dominated regions
(PDR). Only particular narrow channel maps of the velocity-resolved [C II]
spectra show a correlation between the different gas components, which is not
seen at all in the integrated intensity maps. These show different morphology
in all lines but give hardly any information on the origin of the emission. The
[C II] 158 um emission extends for more than 2 pc into the M17 SW molecular
cloud and its line profile covers a broader velocity range than the 12CO
J=13-12 and [C I] emissions, which we interpret as several clumps and layers of
ionized carbon gas within the telescope beam. The high-J CO emission emerges
from a dense region between the ionized and neutral carbon emissions,
indicating the presence of high-density clumps that allow the fast formation of
hot CO in the irradiated complex structure of M17 SW. The [C II] observations
in the southern PDR cannot be explained with stratified nor clumpy PDR models.Comment: 4 pages, 4 figures, letter accepted for the SOFIA/GREAT A&A 2012
special issu
The Link between Gas and Stars in the S254-S258 Star-forming Region
The paper aims to study relation between the distributions of the young stellar objects (YSOs) of different ages and the gas-dust constituents of the S254-S258 star formation complex. This is necessary to study the time evolution of the YSO distribution with respect to the gas and dust compounds that are responsible for the birth of the young stars. For this purpose, we use correlation analysis between different gas, dust, and YSO tracers. We compared the large-scale CO, HCO+, near-IR extinction, and far-IR Herschel maps with the density of YSOs of the different evolutionary classes. The direct correlation analysis between these maps was used together with the wavelet-based spatial correlation analysis. This analysis reveals a much tighter correlation of the gas-dust tracers with the distribution of class I YSOs than with that of class II YSOs. We argue that class I YSOs that were initially born in the central bright cluster S255-IR (both N and S parts) during their evolution to class II stage (∼2 Myr) had enough time to travel through the whole S254-S258 star formation region. Given that the region contains several isolated YSO clusters, the evolutionary link between these clusters and the bright central S255-IR (N and S) cluster can be considered. Despite the complexity of the YSO cluster formation in the non-uniform medium, the clusters of class II YSOs in the S254-258 star formation region can contain objects born in the different locations of the complex. © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.The work of DAL and SAK on correlation analysis in Section 4 was supported by the Russian Science Foundation (RSF) grant 19-72-10012. The work of MSK in the Section 2.1 was supported by the Russian Foundation for Basic Research (RFBR) grant 20-02-00643. The work by DAL in Section 3 was supported by the Russian Ministry of Science and Higher Education, No. FEUZ-2020-0030. The work of AMS in Section 5 was supported by the Large Scientific Project of the Russian Ministry of Science and Higher Education 'Theoretical and experimental studies of the formation and evolution of extrasolar planetary systems and characteristics of exoplanets' (No. 075-15-2020-780, contract 780-10). VO was supported by the Collaborative Research Centre 956, sub-project C1, funded by the Deutsche Forschungsgemeinschaft (DFG), project ID 184018867. The authors acknowledges support from Onsala Space Observatory for the provisioning of its facilities/observational support. The Onsala Space Observatory national research infrastructure is funded through Swedish Research Council grant No. 2017-00648
The far-infrared spectroscopic surveyor (FIRSS)
We are standing at the crossroads of powerful new facilities emerging in the next decade on the ground and in space like ELT, SKA, JWST, and Athena. Turning the narrative of the star formation potential of galaxies into a quantitative theory will provide answers to many outstanding questions in astrophysics, from the formation of planets to the evolution of galaxies and the origin of heavy elements. To achieve this goal, there is an urgent need for a dedicated space-borne, far-infrared spectroscopic facility capable of delivering, for the first time, large scale, high spectral resolution (velocity resolved) multiwavelength studies of the chemistry and dynamics of the ISM of our own Milky Way and nearby galaxies. The Far Infrared Spectroscopic Surveyor (FIRSS) fulfills these requirements and by exploiting the legacy of recent photometric surveys it seizes the opportunity to shed light on the fundamental building processes of our Universe
HIFI observations of warm gas in DR21: Shock versus radiative heating
The molecular gas in the DR21 massive star formation region is known to be
affected by the strong UV field from the central star cluster and by a fast
outflow creating a bright shock. The relative contribution of both heating
mechanisms is the matter of a long debate. By better sampling the excitation
ladder of various tracers we provide a quantitative distinction between the
different heating mechanisms. HIFI observations of mid-J transitions of CO and
HCO+ isotopes allow us to bridge the gap in excitation energies between
observations from the ground, characterizing the cooler gas, and existing ISO
LWS spectra, constraining the properties of the hot gas. Comparing the detailed
line profiles allows to identify the physical structure of the different
components. In spite of the known shock-excitation of H2 and the clearly
visible strong outflow, we find that the emission of all lines up to > 2 THz
can be explained by purely radiative heating of the material. However, the new
Herschel/HIFI observations reveal two types of excitation conditions. We find
hot and dense clumps close to the central cluster, probably dynamically
affected by the outflow, and a more widespread distribution of cooler, but
nevertheless dense, molecular clumps.Comment: Accepted for publication by A&
Herschel observations in the ultracompact HII region Mon R2: Water in dense Photon-dominated regions (PDRs)
Mon R2, at a distance of 830 pc, is the only ultracompact HII region (UC HII)
where the photon-dominated region (PDR) between the ionized gas and the
molecular cloud can be resolved with Herschel. HIFI observations of the
abundant compounds 13CO, C18O, o-H2-18O, HCO+, CS, CH, and NH have been used to
derive the physical and chemical conditions in the PDR, in particular the water
abundance. The 13CO, C18O, o-H2-18O, HCO+ and CS observations are well
described assuming that the emission is coming from a dense (n=5E6 cm-3,
N(H2)>1E22 cm-2) layer of molecular gas around the UC HII. Based on our
o-H2-18O observations, we estimate an o-H2O abundance of ~2E-8. This is the
average ortho-water abundance in the PDR. Additional H2-18O and/or water lines
are required to derive the water abundance profile. A lower density envelope
(n~1E5 cm-3, N(H2)=2-5E22 cm-2) is responsible for the absorption in the NH
1_1-0_2 line. The emission of the CH ground state triplet is coming from both
regions with a complex and self-absorbed profile in the main component. The
radiative transfer modeling shows that the 13CO and HCO+ line profiles are
consistent with an expansion of the molecular gas with a velocity law, v_e =0.5
x (r/Rout)^{-1} km/s, although the expansion velocity is poorly constrained by
the observations presented here.Comment: 4 pages, 5 figure
The CARMA-NRO Orion Survey:The filamentary structure as seen in C18O emission
We present an initial overview of the filamentary structure in the Orion A
molecular cloud utilizing a high angular and velocity resolution CO(1-0)
emission map that was recently produced as part of the CARMA-NRO Orion Survey.
The main goal of this study is to build a credible method to study varying
widths of filaments which has previously been linked to star formation in
molecular clouds. Due to the diverse star forming activities taking place
throughout its 20 pc length, together with its proximity of 388 pc, the
Orion A molecular cloud provides an excellent laboratory for such an experiment
to be carried out with high resolution and high sensitivity. Using the
widely-known structure identification algorithm, DisPerSE, on a 3-dimensional
(PPV) CO cube, we identified 625 relatively short (the longest being
1.74 pc) filaments over the entire cloud. We study the distribution of filament
widths using FilChaP, a python package that we have developed and made publicly
available. We find that the filaments identified in a 2 square degree PPV cube
do not overlap spatially, except for the complex OMC-4 region that shows
distinct velocity components along the line of sight. The filament widths vary
between 0.02 and 0.3 pc depending on the amount of substructure that a filament
possesses. The more substructure a filament has, the larger is its width. We
also find that despite this variation, the filament width shows no
anticorrelation with the central column density which is in agreement with
previous Herschel observations.Comment: 19 pages, 20 figures. Accepted for publication in Astronomy and
Astrophysic
- …