Mon R2, at a distance of 830 pc, is the only ultracompact HII region (UC HII)
where the photon-dominated region (PDR) between the ionized gas and the
molecular cloud can be resolved with Herschel. HIFI observations of the
abundant compounds 13CO, C18O, o-H2-18O, HCO+, CS, CH, and NH have been used to
derive the physical and chemical conditions in the PDR, in particular the water
abundance. The 13CO, C18O, o-H2-18O, HCO+ and CS observations are well
described assuming that the emission is coming from a dense (n=5E6 cm-3,
N(H2)>1E22 cm-2) layer of molecular gas around the UC HII. Based on our
o-H2-18O observations, we estimate an o-H2O abundance of ~2E-8. This is the
average ortho-water abundance in the PDR. Additional H2-18O and/or water lines
are required to derive the water abundance profile. A lower density envelope
(n~1E5 cm-3, N(H2)=2-5E22 cm-2) is responsible for the absorption in the NH
1_1-0_2 line. The emission of the CH ground state triplet is coming from both
regions with a complex and self-absorbed profile in the main component. The
radiative transfer modeling shows that the 13CO and HCO+ line profiles are
consistent with an expansion of the molecular gas with a velocity law, v_e =0.5
x (r/Rout)^{-1} km/s, although the expansion velocity is poorly constrained by
the observations presented here.Comment: 4 pages, 5 figure