92 research outputs found

    Buoyant energy - balancing wind power and other renewable in Europe's oceans

    Get PDF
    Buoyant Energy is a new approach to store electrical energy offshore and at a decentralised location, based on the well established technologies of pumped-storage hydro-power. The following work focuses on the basic concept and discusses some of the key features addressed. The unique adaptability and important synergies with other offshore activities are discussed. A basic cost assessment estimates the life cycle costs in order to demonstrate the economic feasibility. Finally, a case study evaluates the effects of integrating deep offshore wind balanced by Buoyant Energy units in a central Mediterranean archipelago ́s electricity generating system.peer-reviewe

    Primary systemic therapy in HER2-positive operable breast cancer using trastuzumab and chemotherapy: efficacy data, cardiotoxicity and long-term follow-up in 142 patients diagnosed from 2005 to 2016 at a single institution

    Get PDF
    Objective: The aim of this study was to evaluate the efficacy, cardiotoxicity profile and long-term benefits of neoadjuvant therapy in human epidermal growth factor receptor 2-positive operable breast cancer patients. Patients and methods: A total of 142 patients diagnosed from 2005 to 2016 were included in the study. The treatment consisted of a sequential regimen of taxanes and anthracyclines plus trastuzumab. The clinical and pathological responses were evaluated and correlated with clinical and biological factors. The cardiotoxicity profile and long-term benefits were analyzed. Results: The median age was 49 years, and 4%, 69% and 27% of patients had stage I, II and III breast cancer, respectively, while 10% had inflammatory breast cancer at diagnosis. Hormone receptor (HR) status was negative in 43%, and 62% had grade III breast cancer. The clinical complete response rate was 49% and 63% as assessed using ultrasound and magnetic resonance imaging, respectively, and this allowed a high rate of conservative surgery (66%). The pathological complete response (pCR) rate was 52%, and it was higher in HR-negative (64%) patients than in HR-positive (41%) patients and in grade III breast cancer (53%) patients than in grade I-II breast cancer (45%) patients. Patients who achieved pCR had longer disease-free survival and a trend toward improved overall survival. A total of 2% of patients showed a 10% decrease in left ventricular ejection fraction to <50% during treatment. All patients except one recovered after discontinuation of trastuzumab. Conclusion: A sequential regimen of taxanes and anthracyclines plus trastuzumab was effective, with high pCR rates and long-term benefit, and had a very good cardiotoxicity profile

    CNN-Based Watershed Marker Extraction for Brick Segmentation in Masonry Walls

    Get PDF
    Nowadays there is an increasing need for using artificial intelligence techniques in image-based documentation and survey in archeology, architecture or civil engineering applications. Brick segmentation is an important initial step in the documentation and analysis of masonry wall images. However, due to the heterogeneous material, size, shape and arrangement of the bricks, it is highly challenging to develop a widely adoptable solution for the problem via conventional geometric and radiometry based approaches. In this paper, we propose a new technique which combines the strength of deep learning for brick seed localization, and the Watershed algorithm for accurate instance segmentation. More specifically, we adopt a U-Net-based delineation algorithm for robust marker generation in the Watershed process, which provides as output the accurate contours of the individual bricks, and also separates them from the mortar regions. For training the network and evaluating our results, we created a new test dataset which consist of 162 hand-labeled images of various wall categories. Quantitative evaluation is provided both at instance and at pixel level, and the results are compared to two reference methods proposed for wall delineation, and to a morphology based brick segmentation approach. The experimental results showed the advantages of the proposed U-Net markered Watershed method, providing average F1-scores above 80%

    Cell-cell adhesion regulates Merlin/NF2 interaction with the PAF complex

    Get PDF
    The PAF complex (PAFC) coordinates transcription elongation and mRNA processing and its CDC73/parafibromin subunit functions as a tumour suppressor. The NF2/Merlin tumour suppressor functions both at the cell cortex and nucleus and is a key mediator of contact inhibition but the molecular mechanisms remain unclear. In this study we have used affinity proteomics to identify novel Merlin interacting proteins and show that Merlin forms a complex with multiple proteins involved in RNA processing including the PAFC and the CHD1 chromatin remodeller. Tumour-derived inactivating mutations in both Merlin and the CDC73 PAFC subunit mutually disrupt their interaction and growth suppression by Merlin requires CDC73. Merlin interacts with the PAFC in a cell density-dependent manner and we identify a role for FAT cadherins in regulating the Merlin-PAFC interaction. Our results suggest that in addition to its function within the Hippo pathway, Merlin is part of a tumour suppressor network regulated by cell-cell adhesion which coordinates post-initiation steps of the transcription cycle of genes mediating contact inhibition

    Chemo- and Regioselective Lysine Modification on Native Proteins.

    Get PDF
    Site-selective chemical conjugation of synthetic molecules to proteins expands their functional and therapeutic capacity. Current protein modification methods, based on synthetic and biochemical technologies, can achieve site selectivity, but these techniques often require extensive sequence engineering or are restricted to the N- or C-terminus. Here we show the computer-assisted design of sulfonyl acrylate reagents for the modification of a single lysine residue on native protein sequences. This feature of the designed sulfonyl acrylates, together with the innate and subtle reactivity differences conferred by the unique local microenvironment surrounding each lysine, contribute to the observed regioselectivity of the reaction. Moreover, this site selectivity was predicted computationally, where the lysine with the lowest p Ka was the kinetically favored residue at slightly basic pH. Chemoselectivity was also observed as the reagent reacted preferentially at lysine, even in those cases when other nucleophilic residues such as cysteine were present. The reaction is fast and proceeds using a single molar equivalent of the sulfonyl acrylate reagent under biocompatible conditions (37 °C, pH 8.0). This technology was demonstrated by the quantitative and irreversible modification of five different proteins including the clinically used therapeutic antibody Trastuzumab without prior sequence engineering. Importantly, their native secondary structure and functionality is retained after the modification. This regioselective lysine modification method allows for further bioconjugation through aza-Michael addition to the acrylate electrophile that is generated by spontaneous elimination of methanesulfinic acid upon lysine labeling. We showed that a protein-antibody conjugate bearing a site-specifically installed fluorophore at lysine could be used for selective imaging of apoptotic cells and detection of Her2+ cells, respectively. This simple, robust method does not require genetic engineering and may be generally used for accessing diverse, well-defined protein conjugates for basic biology and therapeutic studies

    Quantitative Analysis of Histone Modifications: Formaldehyde Is a Source of Pathological N6-Formyllysine That Is Refractory to Histone Deacetylases

    Get PDF
    Aberrant protein modifications play an important role in the pathophysiology of many human diseases, in terms of both dysfunction of physiological modifications and the formation of pathological modifications by reaction of proteins with endogenous electrophiles. Recent studies have identified a chemical homolog of lysine acetylation, N[superscript 6]-formyllysine, as an abundant modification of histone and chromatin proteins, one possible source of which is the reaction of lysine with 3′-formylphosphate residues from DNA oxidation. Using a new liquid chromatography-coupled to tandem mass spectrometry method to quantify all N[superscript 6]-methyl-, -acetyl- and -formyl-lysine modifications, we now report that endogenous formaldehyde is a major source of N[superscript 6]-formyllysine and that this adduct is widespread among cellular proteins in all compartments. N[superscript 6]-formyllysine was evenly distributed among different classes of histone proteins from human TK6 cells at 1–4 modifications per 10[superscript 4] lysines, which contrasted strongly with lysine acetylation and mono-, di-, and tri-methylation levels of 1.5-380, 5-870, 0-1400, and 0-390 per 10[superscript 4] lysines, respectively. While isotope labeling studies revealed that lysine demethylation is not a source of N[superscript 6]-formyllysine in histones, formaldehyde exposure was observed to cause a dose-dependent increase in N[superscript 6]-formyllysine, with use of [[superscript 13]C,[superscript 2]H[subscript 2]]-formaldehyde revealing unchanged levels of adducts derived from endogenous sources. Inhibitors of class I and class II histone deacetylases did not affect the levels of N[superscript 6]-formyllysine in TK6 cells, and the class III histone deacetylase, SIRT1, had minimal activity (<10%) with a peptide substrate containing the formyl adduct. These data suggest that N[superscript 6]-formyllysine is refractory to removal by histone deacetylases, which supports the idea that this abundant protein modification could interfere with normal regulation of gene expression if it arises at conserved sites of physiological protein secondary modification
    corecore