70 research outputs found

    Exosomes in Bone Sarcomas: Key Players in Metastasis

    Get PDF
    Bone sarcomas are rare cancers which often present with metastatic disease and are still associated with poor survival rates. Studies in the last decade have identified that exosomes, a type of extracellular vesicle released by cells, play an important role in tumour progression and dissemination. Through the transfer of their cargo (RNAs, proteins, and lipids) across cells, they are involved in cellular cross-talk and can induce changes in cellular behaviour. Exosomes have been shown to be important in metastasis organotropism, induction of angiogenesis and vascular permeability, the education of cells towards a pro-metastatic phenotype or the interaction between stromal and tumour cells. Due to the importance exosomes have in disease progression and the high incidence of metastasis in bone sarcomas, recent studies have evaluated the implications of these extracellular vesicles in bone sarcomas. In this review, we discuss the studies that evaluate the role of exosomes in osteosarcoma, Ewing sarcoma, and preliminary data on chondrosarcoma

    The dual inhibitory effect of thiostrepton on FoxM1 and EWS/FLI1 provides a novel therapeutic option for Ewing's sarcoma

    Get PDF
    The poor prognosis of Ewing's sarcoma (EWS), together with its high lethal recurrence rate and the side-effects of current treatments, call for novel targeted therapies with greater curative effectiveness and substantially reduced side-effects. The oncogenic chimeric protein EWS/FLI1 is the key malignancy driver in most EWSs, regulating numerous target genes, many of which influence cell cycle progression. It has often been argued that targeting proteins regulated directly or indirectly by EWS/FLI1 may provide improved therapeutic options for EWS. In this context, our study examined FoxM1, a key cell cycle regulating transcription factor, reported to be expressed in EWS and influenced by EWS/FLI1. Thiostrepton, a naturally occurring small molecule, has been shown to selectively inhibit FoxM1 expression in cancer cells. We demonstrate that in EWS, in addition to inhibiting FoxM1 expression, thiostrepton downregulates the expression of EWS/FLI1, both at the mRNA and protein levels, leading to cell cycle arrest and, ultimately, to apoptotic cell death. We also show that thiostrepton treatment reduces the tumorigenicity of EWS cells, significantly delaying the growth of nude mouse xenograft tumors. Results from this study demonstrate a novel action of thiostrepton as inhibitor of the expression of the EWS/FLI1 oncoprotein in vitro and in vivo, and that it shows greater efficacy against EWS than against other tumor types, as it is active on EWS cells and tumors at concentrations lower than those reported to have effective inhibitory activity on tumor cells derived from other cancers. Owing to the dual action of this small molecule, our findings suggest that thiostrepton may be particularly effective as a novel agent for the treatment of EWS patients

    Targeted Therapies in Sarcomas: Challenging the Challenge

    Get PDF
    Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient's outcome. During the last years, there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway, the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients affected with this disease

    Caveolin-1 in sarcomas: friend or foe?

    Get PDF
    Sarcomas represent a heterogeneous group of tumors with a complex and difficult reproducible classification. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. Caveolin-1 is a multifunctional scaffolding protein with multiple binding partners that regulates multiple cancer-associated processes including cellular transformation, tumor growth, cell death and survival, multidrug resistance, angiogenesis, cell migration and metastasis. However, ambiguous roles have been ascribed to caveolin-1 in signal transduction and cancer, including sarcomas. In particular, evidence indicating that caveolin-1 function is cell context dependent has been repeatedly reported. Caveolin-1 appears to act as a tumor suppressor protein at early stages of cancer progression. In contrast, a growing body of evidence indicates that caveolin-1 is up-regulated in several multidrug-resistant and metastatic cancer cell lines and human tumor specimens. This review is focused on the role of caveolin-1 in several soft tissue and bone sarcomas and discusses the use of this protein as a potential diagnostic and prognostic marker and as a therapeutic target

    Acció dels andrògens en el testicle: un paper per a la meiosi

    Get PDF
    La funció que duen a terme els andrògens en l'espermatogènesi és, encara en certa mesura, enigmàtica: mentre que llur implicació és absolutament vital en la iniciació i en el manteniment del procés espermatogènic normal, la seva funció específica encara no està definida de manera precisa. Els andrògens, com les altres hormones esteroïdals, actuen a través del seu corresponent receptor anomenat receptor d'andrògens (AR). Fins avui, no hi ha gaire evidència que recolzi l'existència de diverses isoformes de l'AR com en el cas del sistema estrògensreceptor d'estrògens. Per tant, la pregunta de com els andrògens duen a terme la seva acció en l'espermatogènesi s'ha d'abordar definint dos processos: en primer lloc, s'han d'identifi- car amb total certesa els tipus cell. ulars testiculars capaços de respondre directament a l'estimulació androgènica. De manera específica, la qüestió per resoldre és quins són els tipus cellulars que expressen l'AR en el testicle. En segon lloc, sabent també que el complex del lligand unit a l'AR actua com a factor de transcripció, caldrà determinar quins són els gens que estaran activats o reprimits en les cèll. ules que tenen AR en resposta a l'estimulació androgènica. Fins que aquestes dues preguntes no estiguin contestades amb tota certesa, el mecanisme pel qual els andrògens regulen l'espermatogènesi serà, en el millor dels casos, especulatiu. En aquesta revisió presentem evidència que els andrògens actuen únicament a les cèll. ules somàtiques del testicle, com són les cèll. ules de Sertoli, les de Leydig, les mioides peritubulars i les cèll. ules del múscul llis que envolten els vasos sanguinis. A més a més, també discutim la possibilitat que els andrògens siguin indispensables per a l'inici de la meiosi, encara que continua essent desconegut el mecanisme pel qual els andrògens actuen en aquest procés.The role that androgens play in spermatogenesis still remains enigmatic: whereas their involvement is absolutely vital to the initiation and maintenance of the normal spermatogenic process, their specific role is yet to be defined. Androgens, like other steroid hormones, act via their corresponding receptor termed the androgen receptor (AR). To date, there is little evidence to support the notion that there are multiple forms of AR as is the case for the estrogen-estrogen receptor system. Thus, the question of how androgens manifest their action on spermatogenesis becomes one of defining two processes: First, the cell types within the testis that are capable of responding directly to androgen stimulation must be identified with absolute certainty. Specifically, this question can be stated as what cell types in the testis express AR. Second, given that the ligand-bound AR serves as a transcription factor, the question then becomes what are the genes turned on or off in AR positive cells in response to androgen stimulation? Until these two questions are unequivocally answered, the mechanism of how androgens regulate spermatogenesis will remain speculative at best. In this review we present evidence that androgens act solely at the level of the somatic cells of the testis, including Sertoli cells, Leydig cells, peritubular myoid cells and smooth muscle cells surrounding blood vessels. In addition, we discuss the likely possibility that androgens are indispensable for the onset of meiosis, albeit how they accomplish this remains a mystery

    Novel Targeting of DNA Methyltransferase Activity Inhibits Ewing Sarcoma Cell Proliferation and Enhances Tumor Cell Sensitivity to DNA Damaging Drugs by Activating the DNA Damage Response

    Get PDF
    DNA methylation is an important component of the epigenetic machinery that regulates the malignancy of Ewing sarcoma (EWS), the second most common primary bone tumor in children and adolescents. Coordination of DNA methylation and DNA replication is critical for maintaining epigenetic programming and the DNMT1 enzyme has been demonstrated to have an important role in both maintaining the epigenome and controlling cell cycle. Here, we showed that the novel nonnucleoside DNMT inhibitor (DNMTi) MC3343 induces a specific depletion of DNMT1 and affects EWS tumor proliferation through a mechanism that is independent on DNA methylation. Depletion of DNMT1 causes perturbation of the cell cycle, with an accumulation of cells in the G1 phase, and DNA damage, as revealed by the induction of gamma H2AX foci. These effects elicited activation of p53-dependent signaling and apoptosis in p53wt cells, while in p53 mutated cells, persistent micronuclei and increased DNA instability was observed. Treatment with MC3343 potentiates the efficacy of DNA damaging agents such as doxorubicin and PARP-inhibitors (PARPi). This effect correlates with increased DNA damage and synergistic tumor cytotoxicity, supporting the use of the DNMTi MC3343 as an adjuvant agent in treating EWS

    EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1

    Get PDF
    Angiogenesis is the result of the combined activity of the tumor microenvironment and signaling molecules. The angiogenic switch is represented as an imbalance between pro- and anti-angiogenic factors and is a rate-limiting step in the development of tumors. Eph receptor tyrosine kinases and their membrane-anchored ligands, known as ephrins, constitute the largest receptor tyrosine kinase (RTK) subfamily and are considered a major family of pro-angiogenic RTKs. Ewing sarcoma (EWS) is a highly aggressive bone and soft tissue tumor affecting children and young adults. As other solid tumors, EWS are reliant on a functional vascular network for the delivery of nutrients and oxygen and for the removal of waste. Based on the biological roles of EphA2 in promoting angiogenesis, we explored the functional role of this receptor and its relationship with caveolin-1 (CAV1) in EWS angiogenesis. We demonstrated that lack of CAV1 results in a significant reduction in micro vascular density (MVD) on 3 different in vivo models. In vitro, this phenomenon correlated with inactivation of EphA2 receptor, lack of AKT response and downregulation of bFGF. We also demonstrated that secreted bFGF from EWS cells acted as chemoattractant for endothelial cells. Furthermore, interaction between EphA2 and CAV1 was necessary for the right localization and signaling of the receptor to produce bFGF through AKT and promote migration of endothelial cells. Finally, introduction of a dominant-negative form of EphA2 into EWS cells mostly reproduced the effects occurred by CAV1 silencing, strongly suggesting that the axis EphA2-CAV1 participates in the promotion of endothelial cell migration toward the tumors favoring EWS angiogenesis

    Validación de la Escala Breve de Optimismo Interactivo-G en México antes de la COVID-19

    Get PDF
    The primary objectives of this study were determining the construct, convergent, and discriminant validity of the Brief Interactive Optimism Scale-G (BIOS-G) in participants from six states of Mexico and estimating its internal consistency. In this study 3 289 Mexicans participated (2 028 men and 1 243 women). The average age was = 30.43 years and SD = 10.52. Confirmatory factor analysis (CFA) and multiple regression analysis (MRA) were applied. There were appropriate fit indexes (e. g., CFI = .99; RMSEA = .07.). Convergent validity showed ANR (3 289)=.52(p=<.01;d=medium), with the Satisfaction with Life Scale (SWLS) and the estimation of discriminant validity was r (3 289) r = -.19 with the Brief Scale for Assessing Anger Proneness (APS-G) (p = < .01; d = almost small), Alpha = .70 (3 289); p = < .01; omega = .76. The conclusion is that there is partial national evidence supporting the use of BIOS-G, because Mexico lacks a measure of this kind, being useful, at least, for research purposes.Los objetivos primarios del presente estudio fueron determinar la validez de constructo, convergente y discriminante de la Escala Breve de Optimismo Interactivo-G (EBOI-G), en participantes de seis estados de México y calcular su consistencia interna. Participaron 3289 mexicanos, 2028 hombres y 1243 mujeres (18 casos no contestaron cuál era su género). Su edad promedio = 30.43 años, de = 10.52. Se usó el análisis factorial confirmatorio y análisis de regresión múltiple, y se encontraron buenos indicadores promedio de bondad de ajuste (e. g., CFI = .99; RMSEA = .07.). Se evaluó la validez convergente, r (3 289) = .52 (p = < .01; d = mediano), con la Escala de Satisfacción con la Vida. Se estimó la validez discriminante, r (3 289) r = -.19, con la Escala Breve de Disposición a la IRA (p = < .01; d = casi pequeño). El alfa = .70 (3 289); p = < .01; el omega = .76. Se concluye que hay evidencia parcial nacional que apoya el uso de la EBOI-G, debido a la carencia de una medida de este tipo en México, útil cuando menos para propósitos de investigación.Os objetivos primários do estudo foram determinar a validade convergente e discriminante do construto da Escala Breve de Otimismo Interativo-G (EBOI-G), em participantes de seis estados do México e calcular sua consistência interna. Participaram 3 289 mexicanos, sendo 2 028 homens e 1 243 mulheres. A média de idade foi = 30.43 anos, DP = 10.52. Foram utilizadas análises fatoriais confirmatórias e análises de regressão múltipla. Bons indicadores médios de qualidade de ajuste foram encontrados (por exemplo, CFI = .99; RMSEA = .07.) A validade convergente foi avaliada, r (3 289) = .52 (p = <.01; d = mediana), com a Escala de satisfação com a vida. A validade discriminante, r (3 289) = -.19 foi estimada com a Escala Breve de Disposição à Raiva (p = <.01; d = quase pequeno). O alfa = 0,70 (3 289); p = <0,01; o ômega = 0,76. Conclui-se que há evidências nacionais parciais que apoiam o uso da EBOI-G, devido à falta de uma medida desse tipo no México, sendo útil pelo menos para fins de pesquisa

    The PARP inhibitor olaparib enhances the sensitivity of Ewing sarcoma to trabectedin

    Get PDF
    Producción CientíficaRecent preclinical evidence has suggested that Ewing Sarcoma (ES) bearing EWSR1-ETS fusions could be particularly sensitive to PARP inhibitors (PARPinh) in combination with DNA damage repair (DDR) agents. Trabectedin is an antitumoral agent that modulates EWSR1-FLI1 transcriptional functions, causing DNA damage. Interestingly, PARP1 is also a transcriptional regulator of EWSR1-FLI1, and PARPinh disrupts the DDR machinery. Thus, given the impact and apparent specificity of both agents with regard to the DNA damage/DDR system and EWSR1-FLI1 activity in ES, we decided to explore the activity of combining PARPinh and Trabectedin in in vitro and in vivo experiments. The combination of Olaparib and Trabectedin was found to be highly synergistic, inhibiting cell proliferation, inducing apoptosis, and the accumulation of G2/M. The drug combination also enhanced γH2AX intranuclear accumulation as a result of DNA damage induction, DNA fragmentation and global DDR deregulation, while EWSR1-FLI1 target expression remained unaffected. The effect of the drug combination was corroborated in a mouse xenograft model of ES and, more importantly, in two ES patient-derived xenograft (PDX) models in which the tumors showed complete regression. In conclusion, the combination of the two agents leads to a biologically significant deregulation of the DDR machinery that elicits relevant antitumor activity in preclinical models and might represent a promising therapeutic tool that should be further explored for translation to the clinical setting.Ministerio de Economía y Competitividad (PI081828)Ministerio de Economía y Competitividad (RD06/0020/0059 )Ministerio de Economía y Competitividad (RD12/0036/0017)Ministerio de Economía y Competitividad (PT13/0010/0056
    corecore