13 research outputs found

    Spatial immunoprofiling of the intratumoral and peritumoral tissue of renal cell carcinoma patients

    Get PDF
    While the abundance and phenotype of tumor-infiltrating lymphocytes are linked with clinical survival, their spatial coordination and its clinical significance remain unclear. Here, we investigated the immune profile of intratumoral and peritumoral tissue of clear cell renal cell carcinoma patients (n = 64). We trained a cell classifier to detect lymphocytes from hematoxylin and eosin stained tissue slides. Using unsupervised classification, patients were further classified into immune cold, hot and excluded topographies reflecting lymphocyte abundance and localization. The immune topography distribution was further validated with The Cancer Genome Atlas digital image dataset. We showed association between PBRM1 mutation and immune cold topography, STAG1 mutation and immune hot topography and BAP1 mutation and immune excluded topography. With quantitative multiplex immunohistochemistry we analyzed the expression of 23 lymphocyte markers in intratumoral and peritumoral tissue regions. To study spatial interactions, we developed an algorithm quantifying the proportion of adjacent immune cell pairs and their immunophenotypes. Immune excluded tumors were associated with superior overall survival (HR 0.19, p = 0.02) and less extensive metastasis. Intratumoral T cells were characterized with pronounced expression of immunological activation and exhaustion markers such as granzyme B, PD1, and LAG3. Immune cell interaction occurred most frequently in the intratumoral region and correlated with CD45RO expression. Moreover, high proportion of peritumoral CD45RO+ T cells predicted poor overall survival. In summary, intratumoral and peritumoral tissue regions represent distinct immunospatial profiles and are associated with clinicopathologic characteristics.Peer reviewe

    E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models

    Get PDF
    Cell-cell and cell-matrix adhesion proteins that have been implicated in colorectal epithelial integrity and epithelial-to-mesenchymal transition could be robust prognostic and potential predictive biomarkers for standard and novel therapies. We analyzed in situ protein expression of E-cadherin (ECAD), integrin beta 4 (ITGB4), zonula occludens 1 (ZO-1), and cytokeratins in a single-hospital series of Norwegian patients with colorectal cancer (CRC) stages I-IV (n = 922) using multiplex fluorescence-based immunohistochemistry (mfIHC) on tissue microarrays. Pharmacoproteomic associations were explored in 35 CRC cell lines annotated with drug sensitivity data on > 400 approved and investigational drugs. ECAD, ITGB4, and ZO-1 were positively associated with survival, while cytokeratins were negatively associated with survival. Only ECAD showed independent prognostic value in multivariable Cox models. Clinical and molecular associations for ECAD were technically validated on a different mfIHC platform, and the prognostic value was validated in another Norwegian series (n = 798). In preclinical models, low and high ECAD expression differentially associated with sensitivity to topoisomerase, aurora, and HSP90 inhibitors, and EGFR inhibitors. E-cadherin protein expression is a robust prognostic biomarker with potential clinical utility in CRC.Peer reviewe

    Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia

    Get PDF
    Ex vivo drug testing is a promising approach to identify novel treatment strategies for acute myeloid leukemia (AML). However, accurate blast- specific drug responses cannot be measured with homogeneous "add-mix-measure" cell viability assays. In this study, we implemented a flow cytometry-based approach to simultaneously evaluate the ex vivo sensitivity of different cell populations in 34 primary AML samples to seven drugs and 27 rational drug combinations. Our data demonstrate that different cell populations present in AML samples have distinct sensitivity to targeted therapies. Particularly, blast cells of FAB M0/1 AML showed high sensitivity to venetoclax. In contrast, differentiated monocytic cells abundantly present in M4/5 subtypes showed resistance to Bcl-2 inhibition, whereas immature blasts in the same samples were sensitive, highlighting the importance of blast-specific readouts. Accordingly, in the total mononuclear cell fraction the highest BCL2/MCL1 gene expression ratio was observed in M0/1 and the lowest in M4/5 AML. Of the seven tested drugs, venetoclax had the highest blast-specific toxicity, and combining venetoclax with either MEK inhibitor trametinib or JAK inhibitor ruxolitinib effectively targeted all venetoclax-resistant blasts. In conclusion, we show that ex vivo efficacy of targeted agents and particularly Bcl-2 inhibitor venetoclax is influenced by the cell type, and accurate blast-specific drug responses can be assessed with a flow cytometry-based approach.Peer reviewe

    Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer

    Get PDF
    Background: The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Methods: Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. Results: We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome-and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. Conclusion: This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns.Peer reviewe

    Somatic mTOR mutation in clonally expanded T lymphocytes associated with chronic graft versus host disease

    Get PDF
    Graft versus host disease (GvHD) is the main complication of allogeneic hematopoietic stem cell transplantation (HSCT). Here we report studies of a patient with chronic GvHD (cGvHD) carrying persistent CD4(+) T cell clonal expansion harboring somatic mTOR, NFKB2, and TLR2 mutations. In the screening cohort (n=134), we detect the mTOR P2229R kinase domain mutation in two additional cGvHD patients, but not in healthy or HSCT patients without cGvHD. Functional analyses of the mTOR mutation indicate a gain-of-function alteration and activation of both mTORC1 and mTORC2 signaling pathways, leading to increased cell proliferation and decreased apoptosis. Single-cell RNA sequencing and real-time impedance measurements support increased cytotoxicity of mutated CD4(+) T cells. High throughput drug-sensitivity testing suggests that mutations induce resistance to mTOR inhibitors, but increase sensitivity for HSP90 inhibitors. Our findings imply that somatic mutations may contribute to aberrant T cell proliferations and persistent immune activation in cGvHD, thereby paving the way for targeted therapies. Chronic graft versus host disease (cGvHD) is a major cause of morbidity and mortality in allogeneic bone marrow transplantation. Here the authors identify a recurrent activating mTOR mutation in expanded donor T-cell clones of 3 cGvHD patients, which suggests somatic mutations may contribute to GvHD pathogenesis and opens avenues to targeted therapies.Peer reviewe

    Somatic mTOR mutation in clonally expanded T lymphocytes associated with chronic graft versus host disease

    Get PDF
    Graft versus host disease (GvHD) is the main complication of allogeneic hematopoietic stem cell transplantation (HSCT). Here we report studies of a patient with chronic GvHD (cGvHD) carrying persistent CD4+ T cell clonal expansion harboring somatic mTOR, NFKB2, and TLR2 mutations. In the screening cohort (n = 134), we detect the mTOR P2229R kinase domain mutation in two additional cGvHD patients, but not in healthy or HSCT patients without cGvHD. Functional analyses of the mTOR mutation indicate a gain-of-function alteration and activation of both mTORC1 and mTORC2 signaling pathways, leading to increased cell proliferation and decreased apoptosis. Single-cell RNA sequencing and real-time impedance measurements support increased cytotoxicity of mutated CD4+ T cells. High throughput drug-sensitivity testing suggests that mutations induce resistance to mTOR inhibitors, but increase sensitivity for HSP90 inhibitors. Our findings imply that somatic mutations may contribute to aberrant T cell proliferations and persistent immune activation in cGvHD, thereby paving the way for targeted therapies.</p

    Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense

    Single-cell characterization of anti-LAG-3 and anti- PD-1 combination treatment in patients with melanoma

    No full text
    BACKGROUND. Relatlimab plus nivolumab (anti-lymphocyte-activation gene 3 plus anti-programmed death 1 [anti-LAG-3+anti-PD-1]) has been approved by the FDA as a first-line therapy for stage III/IV melanoma, but its detailed effect on the immune system is unknown.METHODS. We evaluated blood samples from 40 immunotherapy-naive or prior immunotherapy-refractory patients with metastatic melanoma treated with anti-LAG-3+anti-PD-1 in a phase I trial using single-cell RNA and T cell receptor sequencing (scRNA+TCR alpha beta-Seq) combined with other multiomics profiling.RESULTS. The highest LAG3 expression was noted in NK cells, Tregs, and CD8+ T cells, and these cell populations underwent the most significant changes during the treatment. Adaptive NK cells were enriched in responders and underwent profound transcriptomic changes during the therapy, resulting in an active phenotype. LAG3+ Tregs expanded, but based on the transcriptome profile, became metabolically silent during the treatment. Last, higher baseline TCR clonality was observed in responding patients, and their expanding CD8+ T cell clones gained a more cytotoxic and NK-like phenotype.CONCLUSION. Anti-LAG-3+anti-PD-1 therapy has profound effects on NK cells and Tregs in addition to CD8+ T cells.TRIAL REGISTRATION. ClinicalTrials.gov (NCT01968109)Peer reviewe
    corecore