135 research outputs found

    A new family of matrix product states with Dzyaloshinski-Moriya interactions

    Full text link
    We define a new family of matrix product states which are exact ground states of spin 1/2 Hamiltonians on one dimensional lattices. This class of Hamiltonians contain both Heisenberg and Dzyaloshinskii-Moriya interactions but at specified and not arbitrary couplings. We also compute in closed forms the one and two-point functions and the explicit form of the ground state. The degeneracy structure of the ground state is also discussed.Comment: 15 pages, 1 figur

    Many body physics from a quantum information perspective

    Full text link
    The quantum information approach to many body physics has been very successful in giving new insight and novel numerical methods. In these lecture notes we take a vertical view of the subject, starting from general concepts and at each step delving into applications or consequences of a particular topic. We first review some general quantum information concepts like entanglement and entanglement measures, which leads us to entanglement area laws. We then continue with one of the most famous examples of area-law abiding states: matrix product states, and tensor product states in general. Of these, we choose one example (classical superposition states) to introduce recent developments on a novel quantum many body approach: quantum kinetic Ising models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of correlated electron systems". Improved version new references adde

    HER2-Enriched Subtype and ERBB2 Expression in HER2-Positive Breast Cancer Treated with Dual HER2 Blockade

    Get PDF
    Background: Identification of HER2-positive breast cancers with high anti-HER2 sensitivity could help de-escalate chemotherapy. Here, we tested a clinically applicable RNA-based assay that combines ERBB2 and the HER2-enriched (HER2-E) intrinsic subtype in HER2-positive disease treated with dual HER2-blockade without chemotherapy. Methods: A research-based PAM50 assay was applied in 422 HER2-positive tumors from five II-III clinical trials (SOLTI-PAMELA, TBCRC023, TBCRC006, PER-ELISA, EGF104090). In SOLTI-PAMELA, TBCRC023, TBCRC006, and PER-ELISA, all patients had early disease and were treated with neoadjuvant lapatinib or pertuzumab plus trastuzumab for 12-24 weeks. Primary outcome was pathological complete response (pCR). In EGF104900, 296 women with advanced disease were randomized to receive either lapatinib alone or lapatinib plus trastuzumab. Progression-free survival (PFS), overall response rate (ORR), and overall survival (OS) were evaluated. Results: A total of 305 patients with early and 117 patients with advanced HER2-positive disease were analyzed. In early disease, HER2-E represented 83.8% and 44.7% of ERBB2-high and ERBB2-low tumors, respectively. Following lapatinib and trastuzumab, the HER2-E and ERBB2 (HER2-E/ERBB2)-high group showed a higher pCR rate compared to the rest (44.5%, 95% confidence interval [CI] = 35.4% to 53.9% vs 11.6%, 95% CI = 6.9% to 18.0%; adjusted odds ratio [OR] = 6.05, 95% CI = 3.10 to 11.80, P <. 001). Similar findings were observed with neoadjuvant trastuzumab and pertuzumab (pCR rate of 66.7% in HER2-E/ERBB2-high, 95% CI = 22.3% to 95.7% vs 14.7% in others, 95% CI = 4.9% to 31.1%; adjusted OR = 11.60, 95% CI = 1.66 to 81.10, P =. 01). In the advanced setting, the HER2-E/ERBB2-high group was independently associated with longer PFS (hazard ratio [HR] = 0.52, 95% CI = 0.35 to 0.79, P <. 001); higher ORR (16.3%, 95% CI = 8.9% to 26.2% vs 3.7%, 95% CI = 0.8% to 10.3%, P =. 02); and longer OS (HR = 0.66, 95% CI = 0.44 to 0.97, P =. 01). Conclusions: Combining HER2-E subtype and ERBB2 mRNA into a single assay identifies tumors with high responsiveness to HER2-targeted therapy. This biomarker could help de-escalate chemotherapy in approximately 40% of patients with HER2-positive breast cancer

    HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: A systematic review and meta-analysis

    Get PDF
    Background: HER2-positive (HER2+) breast cancer (BC) comprises all the four PAM50 molecular subtypes. Among these, the HER2-Enriched (HER2-E) appear to be associated with higher pathological complete response (pCR) rates following anti-HER2-based regimens. Here, we present a meta-analysis to validate the association of the HER2-E subtype with pCR following anti-HER2-based neoadjuvant treatments with or without chemotherapy (CT). Methods: A systematic literature search was performed in February 2019. The primary objective was to compare the association between HER2-E subtype (versus others) and pCR. Selected secondary objectives were to compare the association between 1) HER2-E subtype and pCR in CT-free studies, 2) HER2-E subtype within hormone receptor (HR)-negative and HR+ disease and 3) HR-negative disease (versus HR+) and pCR in all patients and within HER2-E subtype. A random-effect model was applied. The Higgins’ I2 was used to quantify heterogeneity. Results: Sixteen studies were included, 5 of which tested CT-free regimens. HER2-E subtype was significantly associated with pCR in all patients (odds ratio [OR] = 3.50, p < 0.001, I2 = 33%), in HR+ (OR = 3.61, p < 0.001, I2 = 1%) and HR-negative tumors (OR = 2.28, p = 0.01, I2 = 47%). In CT-free studies, HER2-E subtype was associated with pCR in all patients (OR = 5.52, p < 0.001, I2 = 0%) and in HR + disease (OR = 4.08, p = 0.001, I2 = 0%). HR-negative status was significantly associated with pCR compared to HR + status in all patients (OR = 2.41, p < 0.001, I2 = 30%) and within the HER2-E subtype (OR = 1.76, p < 0.001, I2 = 0%). Conclusions: The HER2-E biomarker identifies patients with a higher likelihood of achieving a pCR following neoadjuvant anti-HER2-based therapy beyond HR status and CT use. Future trial designs to escalate or de-escalate systemic therapy in HER2+ disease should consider this genomic biomarker

    Updated Nucleosynthesis Constraints on Unstable Relic Particles

    Get PDF
    We revisit the upper limits on the abundance of unstable massive relic particles provided by the success of Big-Bang Nucleosynthesis calculations. We use the cosmic microwave background data to constrain the baryon-to-photon ratio, and incorporate an extensively updated compilation of cross sections into a new calculation of the network of reactions induced by electromagnetic showers that create and destroy the light elements deuterium, he3, he4, li6 and li7. We derive analytic approximations that complement and check the full numerical calculations. Considerations of the abundances of he4 and li6 exclude exceptional regions of parameter space that would otherwise have been permitted by deuterium alone. We illustrate our results by applying them to massive gravitinos. If they weigh ~100 GeV, their primordial abundance should have been below about 10^{-13} of the total entropy. This would imply an upper limit on the reheating temperature of a few times 10^7 GeV, which could be a potential difficulty for some models of inflation. We discuss possible ways of evading this problem.Comment: 40 pages LaTeX, 18 eps figure

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore