2,785 research outputs found

    Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations ismissing. Such data can reveal whether joint effects at the receptor are induced at low levels andmay support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicalswere combined at threemixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists froma wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity

    Who\u27ll Take The Place Of The Song Bird Now Gone?

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/3436/thumbnail.jp

    A dispersive wave pattern on Jupiter's fastest retrograde jet at 2020^\circS

    Full text link
    A compact wave pattern has been identified on Jupiter's fastest retrograding jet at 20S (the SEBs) on the southern edge of the South Equatorial Belt. The wave has been identified in both reflected sunlight from amateur observations between 2010 and 2015, thermal infrared imaging from the Very Large Telescope and near infrared imaging from the Infrared Telescope Facility. The wave pattern is present when the SEB is relatively quiescent and lacking large-scale disturbances, and is particularly notable when the belt has undergone a fade (whitening). It is generally not present when the SEB exhibits its usual large-scale convective activity ('rifts'). Tracking of the wave pattern and associated white ovals on its southern edge over several epochs have permitted a measure of the dispersion relationship, showing a strong correlation between the phase speed (-43.2 to -21.2 m/s) and the longitudinal wavelength, which varied from 4.4-10.0 deg. longitude over the course of the observations. Infrared imaging sensing low pressures in the upper troposphere suggest that the wave is confined to near the cloud tops. The wave is moving westward at a phase speed slower (i.e., less negative) than the peak retrograde wind speed (-62 m/s), and is therefore moving east with respect to the SEBs jet peak. Unlike the retrograde NEBn jet near 17N, which is a location of strong vertical wind shear that sometimes hosts Rossby wave activity, the SEBs jet remains retrograde throughout the upper troposphere, suggesting the SEBs pattern cannot be interpreted as a classical Rossby wave. Cassini-derived windspeeds and temperatures reveal that the vorticity gradient is dominated by the baroclinic term and becomes negative (changes sign) in a region near the cloud-top level (400-700 mbar) associated with the SEBs, suggesting a baroclinic origin for this meandering wave pattern. [Abr]Comment: 19 pages, 11 figures, article accepted for publication in Icaru

    Bioinformatics tools for analysing viral genomic data

    Get PDF
    The field of viral genomics and bioinformatics is experiencing a strong resurgence due to high-throughput sequencing (HTS) technology, which enables the rapid and cost-effective sequencing and subsequent assembly of large numbers of viral genomes. In addition, the unprecedented power of HTS technologies has enabled the analysis of intra-host viral diversity and quasispecies dynamics in relation to important biological questions on viral transmission, vaccine resistance and host jumping. HTS also enables the rapid identification of both known and potentially new viruses from field and clinical samples, thus adding new tools to the fields of viral discovery and metagenomics. Bioinformatics has been central to the rise of HTS applications because new algorithms and software tools are continually needed to process and analyse the large, complex datasets generated in this rapidly evolving area. In this paper, the authors give a brief overview of the main bioinformatics tools available for viral genomic research, with a particular emphasis on HTS technologies and their main applications. They summarise the major steps in various HTS analyses, starting with quality control of raw reads and encompassing activities ranging from consensus and de novo genome assembly to variant calling and metagenomics, as well as RNA sequencing

    Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H2_2 from Cassini Far-IR Spectroscopy

    Full text link
    Far-IR 16-1000 μ\mum spectra of Saturn's hydrogen-helium continuum measured by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a near-continuous record of upper tropospheric (70-700 mbar) temperatures and para-H2_2 fraction as a function of latitude, pressure and time for a third of a Saturnian year (2004-2014, from northern winter to northern spring). The thermal field reveals evidence of reversing summertime asymmetries superimposed onto the belt/zone structure. The temperature structure that is almost symmetric about the equator by 2014, with seasonal lag times that increase with depth and are qualitatively consistent with radiative climate models. Localised heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation to the temperature profile that shifts in magnitude and location, declining in the autumn hemisphere and growing in the spring. Changes in the para-H2_2 (fpf_p) distribution are subtle, with a 0.02-0.03 rise over the spring hemisphere (200-500 mbar) perturbed by (i) low-fpf_p air advected by both the springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of high-fpf_p air at northern high latitudes, responsible for a developing north-south asymmetry in fpf_p. Conversely, the shifting asymmetry in the para-H2_2 disequilibrium primarily reflects the changing temperature structure (and the equilibrium distribution of fpf_p), rather than actual changes in fpf_p induced by chemical conversion or transport. CIRS results interpolated to the same point in the seasonal cycle as re-analysed Voyager-1 observations show qualitative consistency, with the exception of the tropical tropopause near the equatorial zones and belts, where downward propagation of a cool temperature anomaly associated with Saturn's stratospheric oscillation could potentially perturb tropopause temperatures, para-H2_2 and winds. [ABRIDGED]Comment: Preprint accepted for publication in Icarus, 29 pages, 18 figure

    Saturn's atmospheric temperature structure and heat budget

    Get PDF
    The effective temperature of Saturn from 30°S to 10°N is 96.5 ± 2.5 K. This value is 1.9 K higher than our preliminary estimate (Ingersoll et al., 1980). The atmospheric mole fraction of H_2 relative to H_2 + He is 90 ± 3%. This value is derived by comparing infrared and radio occultation data (Kliore et al., this issue) for the same latitude. The high value of the effective temperature suggests that Saturn has an additional energy source besides cooling and contraction. The high mole fraction of H_2 suggests that separation of heavier He toward the core may be supplying the additional energy. Atmospheric temperatures in the 60- to 600-mbar range are 2.5 K lower within 7° of the equator than at higher latitudes. An almost isothermal layer exists between 60 and 160 mbar at all latitudes

    The Origin of Nitrogen on Jupiter and Saturn from the 15^{15}N/14^{14}N Ratio

    Full text link
    The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA's Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues (15^{15}N/14^{14}N) can reveal insights into the molecular carrier (e.g., as N2_2 or NH3_3) of nitrogen to the forming protoplanets, and hence the source reservoirs from which these worlds accreted. We targeted two spectral intervals (900 and 960 cm1^{-1}) that were relatively clear of terrestrial atmospheric contamination and contained close features of 14^{14}NH3_3 and 15^{15}NH3_3, allowing us to derive the ratio from a single spectrum without ambiguity due to radiometric calibration (the primary source of uncertainty in this study). We present the first ground-based determination of Jupiter's 15^{15}N/14^{14}N ratio (in the range from 1.4×1031.4\times10^{-3} to 2.5×1032.5\times10^{-3}), which is consistent with both previous space-based studies and with the primordial value of the protosolar nebula. On Saturn, we present the first upper limit on the 15^{15}N/14^{14}N ratio of no larger than 2.0×1032.0\times10^{-3} for the 900-cm1^{-1} channel and a less stringent requirement that the ratio be no larger than 2.8×1032.8\times10^{-3} for the 960-cm1^{-1} channel (1σ1\sigma confidence). Specifically, the data rule out strong 15^{15}N-enrichments such as those observed in Titan's atmosphere and in cometary nitrogen compounds. To the extent possible with ground-based radiometric uncertainties, the saturnian and jovian 15^{15}N/14^{14}N ratios appear indistinguishable, implying that 15^{15}N-enriched ammonia ices could not have been a substantial contributor to the bulk nitrogen inventory of either planet, favouring the accretion of primordial N2_2 from the gas phase or as low-temperature ices.Comment: 33 pages, 19 figures, manuscript accepted for publication in Icaru

    Far infrared and submillimeter brightness temperatures of the giant planets

    Get PDF
    The brightness temperatures of Jupiter, Saturn, Uranus, and Neptune in the range 35 to 1000 micron. The effective temperatures derived from the measurements, supplemented by shorter wavelength Voyager data for Jupiter and Saturn, are 126.8 + or - 4.5 K, 93.4 + or - 3.3 K, 58.3 + or - 2.0 K, and 60.3 + or - 2.0 K, respectively. The implications of the measurements for bolometric output and for atmospheric structure and composition are discussed. The temperature spectrum of Jupiter shows a strong peak at approx. 350 microns followed by a deep valley at approx. 450 to 500 microns. Spectra derived from model atmospheres qualitatively reproduced these features but do not fit the data closely
    corecore