A compact wave pattern has been identified on Jupiter's fastest retrograding
jet at 20S (the SEBs) on the southern edge of the South Equatorial Belt. The
wave has been identified in both reflected sunlight from amateur observations
between 2010 and 2015, thermal infrared imaging from the Very Large Telescope
and near infrared imaging from the Infrared Telescope Facility. The wave
pattern is present when the SEB is relatively quiescent and lacking large-scale
disturbances, and is particularly notable when the belt has undergone a fade
(whitening). It is generally not present when the SEB exhibits its usual
large-scale convective activity ('rifts'). Tracking of the wave pattern and
associated white ovals on its southern edge over several epochs have permitted
a measure of the dispersion relationship, showing a strong correlation between
the phase speed (-43.2 to -21.2 m/s) and the longitudinal wavelength, which
varied from 4.4-10.0 deg. longitude over the course of the observations.
Infrared imaging sensing low pressures in the upper troposphere suggest that
the wave is confined to near the cloud tops. The wave is moving westward at a
phase speed slower (i.e., less negative) than the peak retrograde wind speed
(-62 m/s), and is therefore moving east with respect to the SEBs jet peak.
Unlike the retrograde NEBn jet near 17N, which is a location of strong vertical
wind shear that sometimes hosts Rossby wave activity, the SEBs jet remains
retrograde throughout the upper troposphere, suggesting the SEBs pattern cannot
be interpreted as a classical Rossby wave. Cassini-derived windspeeds and
temperatures reveal that the vorticity gradient is dominated by the baroclinic
term and becomes negative (changes sign) in a region near the cloud-top level
(400-700 mbar) associated with the SEBs, suggesting a baroclinic origin for
this meandering wave pattern. [Abr]Comment: 19 pages, 11 figures, article accepted for publication in Icaru