44 research outputs found

    Transcription activator structure reveals redox control of a replication initiation reaction†

    Get PDF
    Redox changes are one of the factors that influence cell-cycle progression and that control the processes of cellular proliferation, differentiation, senescence and apoptosis. Proteins regulated through redox-sensitive cysteines have been characterized but specific ‘sulphydryl switches’ in replication proteins remain to be identified. In bovine papillomavirus type-1, DNA replication begins when the viral transcription factor E2 recruits the viral initiator protein E1 to the origin of DNA replication (ori). Here we show that a novel dimerization interface in the E2 transcription activation domain is stabilized by a disulphide bond. Oxidative cross-linking via Cys57 sequesters the interaction surface between E1 and E2, preventing pre-initiation and replication initiation complex formation. Our data demonstrate that as well as a mechanism for regulating DNA binding, redox reactions can control replication by modulating the tertiary structure of critical protein factors using a specific redox sensor

    BRMS1 51-98 and BRMS1 51-84 are crystal oligomeric coiled- coils with different stoichiometry, which behave as disordered proteins in solution

    Get PDF
    ABSTRACT The Breast cancer metastasis suppressor 1 gene suppresses metastasis without affecting the primary tumour growth. Cellular localisation of BRMS1 appears to be important for exerting its effects on metastasis inhibition. We recently described a nucleo-cytoplasmic shuttling for BRMS1 and identified a nuclear export signal within the N-terminal coiled coil. The structure of these regions shows an antiparallel coiled coil capable of oligomerising, which compromises the accessibility to the nuclear export signal consensus residues. We have studied the structural and biophysical features of this region to further understand the contribution of the N-terminal coiled coil to the biological function of BRMS1. We have observed that residues 85 to 98 might be important in defining the oligomerisation state of the BRMS1 N-terminal coiled coil. In addition, we report the presence of a conformational dynamic equilibrium (oligomeric folded species ↔ oligomeric unfolded) in solution in the BRMS1 N-terminal coiled coil that might facilitate the nuclear export of BRMS1 to the cytoplasm.

    Entropically-driven binding of mithramycin in the minor groove of C/G-rich DNA sequences

    Get PDF
    The antitumour antibiotic mithramycin A (MTA) is a DNA minor-groove binding ligand. It binds to C/G-rich tracts as a dimer that forms in the presence of divalent cations such as Mg2+. Differential scanning calorimetry, UV thermal denaturation, isothermal titration calorimetry and competition dialysis were used, together with computations of the hydrophobic free energy of binding, to determine the thermodynamic profile of MTA binding to DNA. The results were compared to those obtained in parallel using the structurally related mithramycin SK (MSK). The binding of MTA to salmon testes DNA determined by UV melting studies (Kobs = 1.2 (±0.3) × 105 M−1) is tighter than that of MSK (2.9 (±1.0) × 104 M−1) at 25°C. Competition dialysis studies showed a tighter MTA binding to both salmon testes DNA (42% C + G) and Micrococcus lysodeikticus DNA (72% C + G). The thermodynamic analysis of binding data at 25°C shows that the binding of MTA and MSK to DNA is entropically driven, dominated by the hydrophobic transfer of the antibiotics from solution to the DNA-binding site. Direct molecular recognition between MTA or MSK and DNA through hydrogen bonding and van der Waals contacts may also contribute significantly to complex formation

    Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis

    Get PDF
    Besides their commonly attributed role in the maintenance of low-copy number plasmids, toxin/antitoxin (TA) loci, also called ‘addiction modules’, have been found in chromosomes and associated to a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. The recent discovery of TA loci in obligatory intracellular species of the Rickettsia genus has prompted new research to establish whether they work as stress response elements or as addiction systems that might be toxic for the host cell. VapBC2 is a TA locus from R. felis, a pathogen responsible for flea-borne spotted fever in humans. The VapC2 toxin is a PIN-domain protein, whereas the antitoxin, VapB2, belongs to the family of swapped-hairpin β-barrel DNA-binding proteins. We have used a combination of biophysical and structural methods to characterize this new toxin/antitoxin pair. Our results show how VapB2 can block the VapC2 toxin. They provide a first structural description of the interaction between a swapped-hairpin β-barrel protein and DNA. Finally, these results suggest how the VapC2/VapB2 molar ratio can control the self-regulation of the TA locus transcription

    Heterogeneous DNA binding modes of berenil

    No full text
    Isothermal titration calorimetry (ITC) profiles of berenil bound to different DNAs show that, despite the strong preference of berenil for AT-rich regions in DNA, it can bind to other DNA sequences significantly. The ITC results were used to quantify the binding of berenil, and the thermodynamic profiles were obtained using natural DNAs as well as synthetic polynucleotides. ITC binding isotherms cannot be simply described when a single set of identical binding sites is considered, except for poly[d(A-T)2]. Ultraviolet melting of DNA and differential scanning calorimetry were also used to quantify several aspects of the binding of berenil to salmon testes DNA. We present evidence for secondary binding sites for berenil in DNA, corresponding to G+C rich sites. Berenil binding to poly[d(G-C)2] is also observed. Circular dichroism experiments showed that binding to GC-rich sites involves drug intercalation. Using a molecular modeling approach we demonstrate that intercalation of berenil into CpG steps is sterically feasible. © 2001 Elsevier Science B.V.This work was supported by Grants from the Spanish DGESIC (PB 98-0469 and PB 96-812), and the Centre de Referencia en BiotecnologiaPeer Reviewe

    The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and responsses GAGA-mediated activation

    Get PDF
    In this study, we report the interaction of the Drosophila transcription factors Trithorax-like (GAGA) and tramtrack (TTK). This interaction is documented both in vitro, through GST pull-down assays, as well as in vivo, in yeast and Schneider S2 cells. GAGA and TTK share in common the presence of an N-terminal POZ/BTB domain that was found to be necessary and sufficient for GAGA-TTK interaction. Structural models that could account for this interaction are discussed. GAGA is known to activate the expression of many genes in Drosophila. On the other hand, TTK was proposed to act as a maternally provided repressor of several pair-rule genes, such as even-skipped (eve). As with many Drosophila genes, eve contains at its promoter region binding sites for GAGA and TTK. Here, in transient expression experiments, we showed that GAGA activates transcription from the eve stripe 2 promoter element and that TTK inhibits this GAGA-dependent activation. Repression by TTK of the eve promoter requires its activation by GAGA and depends on the presence of the POZ/BTB domains of TTK and GAGA. These results indicate that GAGA-TTK interaction contributes to the regulation of gene expression in Drosophila.This work was supported by grants from the Ministerio de Ciencia y Tecnología (BMC2000-878 and BMC2000-898) and the CIRIT (SGR99-185). S.P. and M.O.-L. were recipients of a doctoral fellowship from the CIRIT and a long-term postdoctoral fellowship from FEBS, respectively. This work was carried out within the framework of the `Centre de Referència en Biotecnologia' of the Generalitat de CatalunyaPeer Reviewe

    Crystal structure of a DNA Holliday junction

    Get PDF
    DNA recombination is a universal biological event responsible both for the generation of genetic diversity and for the maintenance of genome integrity. A four-way DNA junction, also termed Holliday junction, is the key intermediate in nearly all recombination processes. This junction is the substrate of recombination enzymes that promote branch migration or catalyze its resolution. We have determined the crystal structure of a four-way DNA junction by multiwavelength anomalous diffraction, and refined it to 2.16 Å resolution. The structure has two-fold symmetry, with pairwise stacking of the double-helical arms, which form two continuous B-DNA helices that run antiparallel, cross in a right-handed way, and contain two G-A mismatches. The exchanging backbones form a compact structure with strong van der Waals contacts and hydrogen bonds, implying that a conformational change must occur for the junction to branch-migrate or isomerize. At the branch point, two phosphate groups from one helix occupy the major groove of the other one, establishing sequence-specific hydrogen bonds. These interactions, together with different stacking energies and steric hindrances, explain the preference for a particular junction stacked conformer.This work was supported by grants from the Ministerio de Educación y Cultura of Spain, the Generalitat de Catalunya, the Centre de Referència en Biotecnologia and the European Union.Peer Reviewe

    Crystallization and preliminary X-ray diffraction analysis of the beta subunit Yke2 of the Gim complex from Saccharomyces cerevisiae

    No full text
    3 páginas, 2 figuras, 1 tablaThe Gim complex (GimC) from Saccharomyces cerevisiae is a heterohexameric protein complex, also known as prefoldin (PFD), which binds and stabilizes unfolded target polypeptides and subsequently delivers them to chaperonins for completion of folding. In this study, the crystallization and preliminary X-ray analysis of one of the beta subunits of the Gim complex (Yke2) from S. cerevisiae are described. The purified protein was crystallized by the vapour-diffusion method, producing two types of crystals that belonged to the orthorhombic space group C222 or the primitive monoclinic space group P2(1). The unit-cell parameters for the C-centred orthorhombic crystal were a = 48.2, b = 168.86, c = 131.81 A and the unit-cell parameters for the primitive monoclinic crystal were a = 47.83, b = 134.90, c = 81.50 A, beta = 100.71 degrees . The Yke2 crystals diffracted to 4.2 and 3.1 A resolution, respectively, on a rotating-anode generator under cryoconditions. This is the first report concerning the crystallization of a beta subunit of a eukaryotic prefoldin.This work was supported by Spanish National Cancer Research Centre (CNIO) and it was partially supported by the EU-grant 3D-repertoire (contract LSHG-CT-2005- 512028) and by Grant SAF2006-10269 of the “Ministerio de Ciencia y Tecnología”, Spain.N

    Crystal Structure of the Catalytic Domain of the PknB Serine/Threonine Kinase from Mycobacterium tuberculosis

    No full text
    International audienceWith the advent of the sequencing programs of prokaryotic genomes, many examples of the presence of serine/threonine protein kinases in these organisms have been identified. Moreover, these kinases could be classified as homologues of those belonging to the well characterized superfamily of the eukaryotic serine/threonine and tyrosine kinases. Eleven such kinases were recognized in the genome of Mycobacterium tuberculosis. Here we report the crystal structure of an active form of PknB, one of the four M. tuberculosis kinases that are conserved in the downsized genome of Mycobacterium leprae and are therefore presumed to play an important role in the processes that regulate the complex life cycle of mycobacteria. Our structure confirms again the extraordinary conservation of the protein kinase fold and constitutes a landmark that extends this conservation across the evolutionary distance between high eukaryotes and eubacteria. The structure of PknB, in complex with a nucleotide triphosphate analog, reveals an enzyme in the active state with an unprecedented arrangement of the Gly-rich loop associated with a new conformation of the nucleotide gamma-phosphoryl group. It presents as well a partially disordered activation loop, suggesting an induced fit mode of binding for the so far unknown substrates of this kinase or for some modulating factor(s)

    The structure of BRMS1 nuclear export signal and SNX6 interacting region reveals a hexamer formed by antiparallel coiled coils

    Get PDF
    14 páginas, 3 tablas, 3 figuras. PMID:21777593[PubMed] Coordinates and structure factors have been deposited in the PDB with accession number 2XUSWe present here the first structural report derived from breast cancer metastasis suppressor 1 (BRMS1), a member of the metastasis suppressor protein group, which, during recent years, have drawn much attention since they suppress metastasis without affecting the growth of the primary tumor. The relevance of the predicted N-terminal coiled coil on the molecular recognition of some of the BRMS1 partners, on its cellular localization and on the role of BRMS1 biological functions such as transcriptional repression prompted us to characterize its three-dimensional structure by X-ray crystallography. The structure of BRMS1 N-terminal region reveals that residues 51-98 form an antiparallel coiled-coil motif and, also, that it has the capability of homo-oligomerizing in a hexameric conformation by forming a trimer of coiled-coil dimers. We have also performed hydrodynamic experiments that strongly supported the prevalence in solution of this quaternary structure for BRMS1(51-98). This work explores the structural features of BRMS1 N-terminal region to help clarify the role of this area in the context of the full-length protein. Our crystallographic and biophysical results suggest that the biological function of BRMS1 may be affected by its ability to promote molecular clustering through its N-terminal coiled-coil region.This work was supported by Ministerio de Ciencia e Innovación (SAF2008-04048-E and SAF2009-10667); Conselleria de Sanitat, Generalitat Valenciana (AP-001/10); Consejo Superior de Investigaciones Científicas (200820I020); and Fundación Mutua Madrileña, Spain. Work in JLN laboratory was supported by Ministerio de Ciencia e Innovacion (CSD2008-00005, SAF2008-05742-C2-01), Generalitat Valenciana (ACOMP2011/113) and Fundación para la investigación y prevención del SIDA en España, FIPSE, (36557/06).Peer reviewe
    corecore