2,609 research outputs found

    Slow-control system for the Hydrogen Cluster-Jet Test Facility at GSI

    Get PDF

    A dual-mode mobile phone microscope using the onboard camera flash and ambient light

    Get PDF
    Mobile phone microscopes are a natural platform for point-of-care imaging, but current solutions require an externally powered illumination source, thereby adding bulk and cost. We present a mobile phone microscope that uses the internal flash or sunlight as the illumination source, thereby reducing complexity whilst maintaining functionality and performance. The microscope is capable of both brightfield and darkfield imaging modes, enabling microscopic visualisation of samples ranging from plant to mammalian cells. We describe the microscope design principles, assembly process, and demonstrate its imaging capabilities through the visualisation of unlabelled cell nuclei to observing the motility of cattle sperm and zooplankton.A. Orth, E. R Wilson, J. G. Thompson and B. C. Gibso

    Chromosomal control of non-gliadin proteins from the 70% ethanol extract of wheat endosperm

    Full text link
    The non-gliadin fraction of the 70% ethanol extracts of compensated nulli-tetrasomics and ditelosomics of Triticum aestivum cv. Chinese Spring has been analyzed by combined electrofocusing and electrophoresis. Seventeen of the 21 protein map components of the euploid have been ascribed to eight chromosomes: 4A, 3BS, 6BS, 7BS, 3D, 4D, 5D and 7DS. The relationship of the different map components with other proteins previously associated with the same chromosomes is discusse

    Pion radii in nonlocal chiral quark model

    Full text link
    The electromagnetic radius of the charged pion and the transition radius of the neutral pion are calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the contributions of vector mesons to the pion radii are noticeably suppressed in comparison with a similar contribution in the local Nambu--Jona-Lasinio model. The form-factor for the process gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in satisfactory agreement with experimental data.Comment: 7 pages, 7 figure

    Fluorescence brightness and photostability of individual copper (I) oxide nanocubes

    Get PDF
    Conventional organic fluorophores lose their ability to fluoresce after repeated exposure to excitation light due to photobleaching. Therefore, research into emerging bright and photostable nanomaterials has become of great interest for a range of applications such as bio-imaging and tracking. Among these emerging fluorophores, metal oxide-based nanomaterials have attracted significant attention as a potential multifunctional material with photocatalytic and angeogenisis abilities in addition to fluorescnce applications. However, most of these applications are highly dependent on size, morphology, and chemo-physical properties of individual particles. In this manuscript, we present a method to study the intrinsic optical characteristics of individual copper (I) oxide (Cu2O) nanocubes. When excited at 520 nm using only 11 ”W excitation power (1.7 W/cm2), individual nanocubes were observed to emit light with peak wavelengths ~760 nm which is conveniently within the near-infrared 1 (NIR1) biological window where tissue autofluorescence is minimal. Bright and photostable fluorescence was observed with intensities up to 487 K counts/s under constant illumination for at least 2 minutes with a brightness approximately four times higher than the autofluorescence from a fixed cumulus-oocyte complex. With near-IR emission, high fluorescence brightness, and outstanding photostability, Cu2O nanocubes are attractive candidates for long-term fluorescent bioimaging applications.Nafisa Zohora, Ahmad Esmaielzadeh Kandjani, Antony Orth, Hannah M. Brown, Mark R. Hutchinson and Brant C. Gibso

    Thermal and Chemical Freeze-out in Spectator Fragmentation

    Full text link
    Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.Comment: 14 pages, 10 figures, submitted to Phys. Rev. C, small changes as suggested by the editors and referee

    Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest

    Get PDF
    Droughts affect terrestrial ecosystems directly and concurrently and can additionally induce lagged effects in subsequent seasons and years. Such legacy effects of drought on vegetation growth and state have been widely studied in tree ring records and satellite-based vegetation greenness, while legacies on ecosystem carbon fluxes are still poorly quantified and understood. Here, we focus on two ecosystem monitoring sites in central Germany with a similar climate but characterised by different species and age structures. Using eddy covariance measurements, we detect legacies on gross primary productivity (GPP) by calculating the difference between random forest model estimates of potential GPP and observed GPP. Our results showed that, at both sites, droughts caused significant legacy effects on GPP at seasonal and annual timescales, which were partly explained by reduced leaf development. The GPP reduction due to drought legacy effects is of comparable magnitude to the concurrent drought effects but differed between two neighbouring forests with divergent species and age structures. The methodology proposed here allows the quantification of the temporal dynamics of legacy effects at the sub-seasonal scale and the separation of legacy effects from model uncertainties. The application of the methodology at a larger range of sites will help us to quantify whether the identified lag effects are general and on which factors they may depend.ISSN:1726-4170ISSN:1726-417

    Multiplicity correlations of intermediate-mass fragments with pions and fast protons in 12C + 197Au

    Full text link
    Low-energy pi+ (E < 35 MeV) from 12C+197Au collisions at incident energies from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl) calibration telescopes of the INDRA multidetector. The inclusive angular distributions are approximately isotropic, consistent with multiple rescattering in the target spectator. The multiplicity correlations of the low-energy pions and of energetic protons (E > 150 MeV) with intermediate-mass fragments were determined from the measured coincidence data. The deduced correlation functions 1 + R \approx 1.3 for inclusive event samples reflect the strong correlations evident from the common impact-parameter dependence of the considered multiplicities. For narrow impact-parameter bins (based on charged-particle multiplicity), the correlation functions are close to unity and do not indicate strong additional correlations. Only for pions at high particle multiplicities (central collisions) a weak anticorrelation is observed, probably due to a limited competition between these emissions. Overall, the results are consistent with the equilibrium assumption made in statistical multifragmentation scenarios. Predictions obtained with intranuclear cascade models coupled to the Statistical Multifragmentation Model are in good agreement with the experimental data.Comment: 9 pages, 11 figures, subm. to EPJ
    • 

    corecore