175 research outputs found

    Identification of synthetic lethality of PRKDC in MYC-dependent human cancers by pooled shRNA screening

    Get PDF
    BACKGROUND: MYC family members are among the most frequently deregulated oncogenes in human cancers, yet direct therapeutic targeting of MYC in cancer has been challenging thus far. Synthetic lethality provides an opportunity for therapeutic intervention of MYC-driven cancers. METHODS: A pooled kinase shRNA library screen was performed and next-generation deep sequencing efforts identified that PRKDC was synthetically lethal in cells overexpressing MYC. Genes and proteins of interest were knocked down or inhibited using RNAi technology and small molecule inhibitors, respectively. Quantitative RT-PCR using TaqMan probes examined mRNA expression levels and cell viability was assessed using CellTiter-Glo (Promega). Western blotting was performed to monitor different protein levels in the presence or absence of RNAi or compound treatment. Statistical significance of differences among data sets were determined using unpaired t test (Mann-Whitney test) or ANOVA. RESULTS: Inhibition of PRKDC using RNAi (RNA interference) or small molecular inhibitors preferentially killed MYC-overexpressing human lung fibroblasts. Moreover, inducible PRKDC knockdown decreased cell viability selectively in high MYC-expressing human small cell lung cancer cell lines. At the molecular level, we found that inhibition of PRKDC downregulated MYC mRNA and protein expression in multiple cancer cell lines. In addition, we confirmed that overexpression of MYC family proteins induced DNA double-strand breaks; our results also revealed that PRKDC inhibition in these cells led to an increase in DNA damage levels. CONCLUSIONS: Our data suggest that the synthetic lethality between PRKDC and MYC may in part be due to PRKDC dependent modulation of MYC expression, as well as MYC-induced DNA damage where PRKDC plays a key role in DNA damage repair

    Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling

    Get PDF
    Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub) ligases. We have annotated ∼617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein – two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-κB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment

    Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling

    Get PDF
    SummaryInsulin resistance is a primary defect in type 2 diabetes characterized by impaired peripheral glucose uptake and insufficient suppression of hepatic glucose output. Insulin signaling inhibits liver glucose production by inducing nuclear exclusion of the gluconeogenic transcription factor FOXO1 in an Akt-dependent manner. Through the concomitant application of genome-scale functional screening and quantitative image analysis, we have identified PTP-MEG2 as a modulator of insulin-dependent FOXO1 subcellular localization. Ectopic expression of PTP-MEG2 in cells inhibited insulin-induced phosphorylation of the insulin receptor, while RNAi-mediated reduction of PTP-MEG2 transcript levels enhanced insulin action. Additionally, adenoviral-mediated depletion of PTP-MEG2 in livers of diabetic (db/db) mice resulted in insulin sensitization and normalization of hyperglycemia. These data implicate PTP-MEG2 as a mediator of blood glucose homeostasis through antagonism of insulin signaling, and suggest that modulation of PTP-MEG2 activity may be an effective strategy in the treatment of type 2 diabetes

    High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor

    Get PDF
    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. © 2014 Bill et al

    Cellular Ser/Thr-Kinase Assays Using Generic Peptide Substrates

    Get PDF
    High-throughput cellular profiling has successfully stimulated early drug discovery pipelines by facilitating targeted as well as opportunistic lead finding, hit annotation and SAR analysis. While automation-friendly universal assay formats exist to address most established drug target classes like GPCRs, NHRs, ion channels or Tyr-kinases, no such cellular assay technology is currently enabling an equally broad and rapid interrogation of the Ser/Thr-kinase space. Here we present the foundation of an emerging cellular Ser/Thr-kinase platform that involves a) coexpression of targeted kinases with promiscuous peptide substrates and b) quantification of intracellular substrate phosphorylation by homogeneous TR-FRET. Proof-of-concept data is provided for cellular AKT, B-RAF and CamK2δ assays. Importantly, comparable activity profiles were found for well characterized B-Raf inhibitors in TR-FRET assays relying on either promiscuous peptide substrates or a MEK1(WT) protein substrate respectively. Moreover, IC50-values correlated strongly between cellular TR-FRET assays and a gold standard Ba/F3 proliferation assay for B-Raf activity. Finally, we expanded our initial assay panel by screening a kinase-focused cDNA library and identified starting points for >20 cellular Ser/Thr-kinase assays

    Identity development and forgivingness: tests of basic relations and mediational pathways

    Full text link
    Adaptive identity development leads to increases in personality traits that allow for social well-being. The current study tested this claim with respect to forgivingness, a dispositional tendency to forgive others. In a sample of university undergraduates (N = 214), we examined the relations between forgivingness and two indicators of identity development: commitment and exploration. Forgivingness uniquely positively related with both identity variables, controlling for the other. Next, we tested mediational models to examine the mechanisms underlying these relationships. Our results suggest that, in part, the association between identity development and forgivingness is mediated by levels of agreeableness and neuroticism, as measured by the Big Five Inventory

    Negative Regulators of Insulin Signaling Revealed in a Genome-Wide Functional Screen

    Get PDF
    Type 2 diabetes develops due to a combination of insulin resistance and β-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention.An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action.Among the novel hits was PALD (KIAA1274, paladin), a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR) abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome

    Multicentre study on the reproducibility of MALDI-TOF MS for nontuberculous mycobacteria identification

    Get PDF
    The ability of MALDI-TOF for the identification of nontuberculous mycobacteria (NTM) has improved recently thanks to updated databases and optimized protein extraction procedures. Few multicentre studies on the reproducibility of MALDI-TOF have been performed so far, none on mycobacteria. The aim of this study was to evaluate the reproducibility of MALDI-TOF for the identification of NTM in 15 laboratories in 9 European countries. A total of 98 NTM clinical isolates were grown on Lowenstein-Jensen. Biomass was collected in tubes with water and ethanol, anonymized and sent out to the 15 participating laboratories. Isolates were identified using MALDI Biotyper (Bruker Daltonics). Up to 1330 MALDI-TOF identifications were collected in the study. A score >= 1.6 was obtained for 100% of isolates in 5 laboratories (68.2-98.6% in the other). Species-level identification provided by MALDI-TOF was 100% correct in 8 centres and 100% correct to complex-level in 12 laboratories. In most cases, the misidentifications obtained were associated with closely related species. The variability observed for a few isolates could be due to variations in the protein extraction procedure or to MALDI-TOF system status in each centre. In conclusion, MALDI-TOF showed to be a highly reproducible method and suitable for its implementation for NTM identification
    • …
    corecore