504 research outputs found

    Capacity and Control of Multiple-Target Search

    Get PDF

    The Near-Horizon Limit of the Extreme Rotating d=5 Black Hole as a Homogenous Spacetime

    Get PDF
    We show that the spacetime of the near-horizon limit of the extreme rotating d=5 black hole, which is maximally supersymmetric in N=2,d=5 supergravity for any value of the rotation parameter j in [-1,1], is locally isomorphic to a homogeneous non-symmetric spacetime corresponding to an element of the 1-parameter family of coset spaces SO(2,1)x SO(3)/SO(2)_j in which the subgroup SO(2)_j is a combination of the two SO(2) subgroups of SO(2,1) and SO(3).Comment: Some points clarified and misprints corrected. Version to be published in Classical and Quantum Gravit

    Optimizing photorespiration for improved crop productivity

    Get PDF
    © 2018 Institute of Botany, Chinese Academy of Sciences In C3 plants, photorespiration is an energy-expensive process, including the oxygenation of ribulose-1,5-bisphosphate (RuBP) by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the ensuing multi-organellar photorespiratory pathway required to recycle the toxic byproducts and recapture a portion of the fixed carbon. Photorespiration significantly impacts crop productivity through reducing yields in C3 crops by as much as 50% under severe conditions. Thus, reducing the flux through, or improving the efficiency of photorespiration has the potential of large improvements in C3 crop productivity. Here, we review an array of approaches intended to engineer photorespiration in a range of plant systems with the goal of increasing crop productivity. Approaches include optimizing flux through the native photorespiratory pathway, installing non-native alternative photorespiratory pathways, and lowering or even eliminating Rubisco-catalyzed oxygenation of RuBP to reduce substrate entrance into the photorespiratory cycle. Some proposed designs have been successful at the proof of concept level. A plant systems-engineering approach, based on new opportunities available from synthetic biology to implement in silico designs, holds promise for further progress toward delivering more productive crops to farmer\u27s fields

    The positive impact of agile retrospectives on the collaboration of distributed development teams – A practical approach on the example of Bosch engineering GmbH

    Get PDF
    To counteract competitive pressure, increasing customer requirements and growing product complexity successful distributed collaboration in product development is vital. Companies have to face new challenges, such as efficiency losses in communication. To overcome these challenges agile working practices, such as agile retrospectives, could be beneficial. The objective of this scientific work is to evaluate the benefit of agile working practices on the example of agile retrospectives, for the improvement of collaboration in distributed development teams. Based on literature analysis, qualitative and quantitative expert interviews following the DRM by Blessing and Chakrabarti, this scientific work shows that agile working practices have a high potential to improve distributed collaboration. To address this potential, several virtual agile retrospectives are developed and conducted within a distributed team at Bosch Engineering GmbH. The evaluation of this approach results in a high potential of agile retrospectives indicating an improvement tendency. Especially iteratively implemented virtual agile retrospectives have a positive impact on successful distributed collaboration

    Effect of the electrochemical characteristics of titanium on the adsorption kinetics of albumin

    Get PDF
    An electrochemical quartz crystal microbalance (EQCM) was used to examine the electrochemical behaviour of pure titanium in phosphate buffered saline (PBS) and PBS-containing bovine serum albumin (BSA) solutions, and the associated adsorption characteristics of BSA under cathodic and anodic applied potentials. It was found that the electrochemical behaviours of bulk titanium substrate and titanium-coated QCM sensors are slightly different in PBS buffer solution, which is attributed to the difference in their surface roughness. The oxide film formed on the surface of the QCM sensor during potentiostatic tests was found to affect its electrochemical behaviour, while cathodic cleaning is not sufficient to have it removed. Lastly, the excessive amount of electrons on the titanium surface upon application of a cathodic potential could result in the desorption of BSA due to electrostatic repulsion and protein dehydration. In contrast, application of anodic potential charges the titanium surface positively and can facilitate protein adsorption when the surface is not saturated with protein

    The Clementine Bistatic Radar Experiment

    Get PDF
    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole
    • …
    corecore