67 research outputs found

    Central role of α7 nicotinic receptor in differentiation of the stratified squamous epithelium

    Get PDF
    Several ganglionic nicotinic acetylcholine receptor (nAChR) types are abundantly expressed in nonneuronal locations, but their functions remain unknown. We found that keratinocyte α7 nAChR controls homeostasis and terminal differentiation of epidermal keratinocytes required for formation of the skin barrier. The effects of functional inactivation of α7 nAChR on keratinocyte cell cycle progression, differentiation, and apoptosis were studied in cell monolayers treated with α-bungarotoxin or antisense oligonucleotides and in the skin of Acra7 homozygous mice lacking α7 nAChR channels. Elimination of the α7 signaling pathway blocked nicotine-induced influx of 45Ca2+ and also inhibited terminal differentiation of these cells at the transcriptional and/or translational level. On the other hand, inhibition of the α7 nAChR pathway favored cell cycle progression. In the epidermis of α7−/− mice, the abnormalities in keratinocyte gene expression were associated with phenotypic changes characteristic of delayed epidermal turnover. The lack of α7 was associated with up-regulated expression of the α3 containing nAChR channels that lack α5 subunit, and both homomeric α9- and heteromeric α9α10-made nAChRs. Thus, this study demonstrates that ACh signaling through α7 nAChR channels controls late stages of keratinocyte development in the epidermis by regulating expression of the cell cycle progression, apoptosis, and terminal differentiation genes and that these effects are mediated, at least in part, by alterations in transmembrane Ca2+ influx

    Efficient estimation of nonparametric genetic risk function with censored data

    Get PDF
    With an increasing number of causal genes discovered for complex human disorders, it is crucial to assess the genetic risk of disease onset for individuals who are carriers of these causal mutations and compare the distribution of age-at-onset with that in non-carriers. In many genetic epidemiological studies aiming at estimating causal gene effect on disease, the age-at-onset of disease is subject to censoring. In addition, some individuals’ mutation carrier or non-carrier status can be unknown due to the high cost of in-person ascertainment to collect DNA samples or death in older individuals. Instead, the probability of these individuals’ mutation status can be obtained from various sources. When mutation status is missing, the available data take the form of censored mixture data. Recently, various methods have been proposed for risk estimation from such data, but none is efficient for estimating a nonparametric distribution. We propose a fully efficient sieve maximum likelihood estimation method, in which we estimate the logarithm of the hazard ratio between genetic mutation groups using B-splines, while applying nonparametric maximum likelihood estimation for the reference baseline hazard function. Our estimator can be calculated via an expectation-maximization algorithm which is much faster than existing methods. We show that our estimator is consistent and semiparametrically efficient and establish its asymptotic distribution. Simulation studies demonstrate superior performance of the proposed method, which is applied to the estimation of the distribution of the age-at-onset of Parkinson's disease for carriers of mutations in the leucine-rich repeat kinase 2 gene

    Hierarchical Data-Driven Analysis of Clinical Symptoms Among Patients With Parkinson's Disease

    Get PDF
    Mutations in the LRRK2 and GBA genes are the most common inherited causes of Parkinson's disease (PD). Studies exploring phenotypic differences based on genetic status used hypothesis-driven data-gathering and statistical-analyses focusing on specific symptoms, which may influence the validity of the results. We aimed to explore phenotypic expression in idiopathic PD (iPD) patients, G2019S-LRRK2-PD, and GBA-PD using a data-driven approach, allowing screening of large numbers of features while controlling selection bias. Data was collected from 1525 Ashkenazi Jews diagnosed with PD from the Tel-Aviv Medical center; 161 G2019S-LRRK2-PD, 222 GBA-PD, and 1142 iPD (no G2019S-LRRK2 or any of the 7 AJ GBA mutations tested). Data included 771 measures: demographics, cognitive, physical and neurological functions, performance-based measures, and non-motor symptoms. The association of the genotypes with each of the measures was tested while accounting for age at motor symptoms onset, gender, and disease duration; p-values were reported and corrected in a hierarchical approach for an average over the selected measures false discovery rate control, resulting in 32 measures. GBA-PD presented with more severe symptoms expression while LRRK2-PD had more benign symptoms compared to iPD. GBA-PD presented greater cognitive and autonomic involvement, more frequent hyposmia and REM sleep behavior symptoms while these were less frequent among LRRK2-PD compared to iPD. Using a data-driven analytical approach strengthens earlier studies and extends them to portray a possible unique disease phenotype based on genotype among AJ PD. Such findings could help direct a more personalized therapeutic approach

    Genetic markers of Restless Legs Syndrome in Parkinson disease

    Full text link
    INTRODUCTION: Several studies proposed that Restless Legs Syndrome (RLS) and Parkinson disease (PD) may be clinically and/or etiologically related. To examine this hypothesis, we aimed to determine whether the known RLS genetic markers may be associated with PD risk, as well as with PD subtype. METHODS: Two case-control cohorts from Tel-Aviv and New-York, including 1133 PD patients and 867 controls were genotyped for four RLS-related SNPs in the genes MEIS1, BTBD9, PTPRD and MAP2K5/SKOR1. The association between genotype, PD risk and phenotype was tested using multivariate regression models. RESULTS: None of the tested SNPs was significantly associated with PD risk, neither in any individual cohort nor in the combined analysis after correction for multiple comparisons. The MAP2K5/SKOR1 marker rs12593813 was associated with higher frequency of tremor in the Tel-Aviv cohort (61.0% vs. 46.5%, p = 0.001, dominant model). However, the risk allele for tremor in this gene has been associated with reduced RLS risk. Moreover, this association did not replicate in Tremor-dominant PD patients from New-York. CONCLUSION: RLS genetic risk markers are not associated with increased PD risk or subtype in the current study. Together with previous genetic, neuropathological and epidemiologic studies, our results further strengthen the notion that RLS and PD are likely to be distinct entities

    GBA mutations are associated with Rapid eye movement sleep behavior disorder

    Get PDF
    Rapid eye movement sleep behavior disorder and GBA mutations are both associated with Parkinson’s disease. The GBA gene was sequenced in idiopathic rapid eye movement sleep behavior disorder patients (n = 265), and compared to controls (n = 2240). Rapid eye movement sleep behavior disorder questionnaire was performed in an independent Parkinson’s disease cohort (n = 120). GBA mutations carriers had an OR of 6.24 (10.2% in patients vs. 1.8% in controls, P < 0.0001) for rapid eye movement sleep behavior disorder, and among Parkinson’s disease patients, the OR for mutation carriers to have probable rapid eye movement sleep behavior disorder was 3.13 (P = 0.039). These results demonstrate that rapid eye movement sleep behavior disorder is associated with GBA mutations, and that combining genetic and prodromal data may assist in identifying individuals susceptible to Parkinson’s disease

    Genomewide Association Studies of LRRK2 Modifiers of Parkinson's Disease.

    Get PDF
    OBJECTIVE: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. METHODS: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. RESULTS: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. INTERPRETATION: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94

    Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma

    Get PDF
    Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients

    A Genome-Wide Scan of Ashkenazi Jewish Crohn's Disease Suggests Novel Susceptibility Loci

    Get PDF
    Crohn's disease (CD) is a complex disorder resulting from the interaction of intestinal microbiota with the host immune system in genetically susceptible individuals. The largest meta-analysis of genome-wide association to date identified 71 CD–susceptibility loci in individuals of European ancestry. An important epidemiological feature of CD is that it is 2–4 times more prevalent among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Europeans (NJ). To explore genetic variation associated with CD in AJs, we conducted a genome-wide association study (GWAS) by combining raw genotype data across 10 AJ cohorts consisting of 907 cases and 2,345 controls in the discovery stage, followed up by a replication study in 971 cases and 2,124 controls. We confirmed genome-wide significant associations of 9 known CD loci in AJs and replicated 3 additional loci with strong signal (p<5×10−6). Novel signals detected among AJs were mapped to chromosomes 5q21.1 (rs7705924, combined p = 2×10−8; combined odds ratio OR = 1.48), 2p15 (rs6545946, p = 7×10−9; OR = 1.16), 8q21.11 (rs12677663, p = 2×10−8; OR = 1.15), 10q26.3 (rs10734105, p = 3×10−8; OR = 1.27), and 11q12.1 (rs11229030, p = 8×10−9; OR = 1.15), implicating biologically plausible candidate genes, including RPL7, CPAMD8, PRG2, and PRG3. In all, the 16 replicated and newly discovered loci, in addition to the three coding NOD2 variants, accounted for 11.2% of the total genetic variance for CD risk in the AJ population. This study demonstrates the complementary value of genetic studies in the Ashkenazim
    corecore