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Summary

With an increasing number of causal genes discovered for complex human disorders, it is crucial 

to assess the genetic risk of disease onset for individuals who are carriers of these causal mutations 

and compare the distribution of age-at-onset with that in non-carriers. In many genetic 

epidemiological studies aiming at estimating causal gene effect on disease, the age-at-onset of 

disease is subject to censoring. In addition, some individuals’ mutation carrier or non-carrier status 

can be unknown due to the high cost of in-person ascertainment to collect DNA samples or death 

in older individuals. Instead, the probability of these individuals’ mutation status can be obtained 
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from various sources. When mutation status is missing, the available data take the form of 

censored mixture data. Recently, various methods have been proposed for risk estimation from 

such data, but none is efficient for estimating a nonparametric distribution. We propose a fully 

efficient sieve maximum likelihood estimation method, in which we estimate the logarithm of the 

hazard ratio between genetic mutation groups using B-splines, while applying nonparametric 

maximum likelihood estimation for the reference baseline hazard function. Our estimator can be 

calculated via an expectation-maximization algorithm which is much faster than existing methods. 

We show that our estimator is consistent and semiparametrically efficient and establish its 

asymptotic distribution. Simulation studies demonstrate superior performance of the proposed 

method, which is applied to the estimation of the distribution of the age-at-onset of Parkinson's 

disease for carriers of mutations in the leucine-rich repeat kinase 2 gene.

Keywords

Empirical process; Mixture distribution; Parkinson's disease; Semiparametric efficiency; Sieve 
maximum likelihood estimation

1. Introduction

Identification of causal genes for many genetic disorders has made personalized risk 

assessment and prediction of disease onset a real possibility. However, although interest lies 

in estimating the cumulative risk distributions of disease onset for individuals who are 

carriers of deleterious mutations or for those with a certain haplotype, investigators may 

encounter missing genotypes or phase information of the haplotypes in a large proportion of 

individuals. For instance, genotypes in family members may be missing due to the high cost 

of collecting blood samples from relatives, death of a relative (Wacholder et al., 1998; 

Marder et al., 2003; Zhang et al., 2010; Wang et al., 2012; Qin et al., 2014), or limitations in 

the technology to separate two homologous chromosomes in genotyping. Furthermore, 

disease onset information is subject to censoring due to lost to follow-up or death.

In the presence of missing genotype information, the statistical framework for estimating 

disease risk distribution associated with genetic mutations is essentially the analysis of 

censored mixture data. There is a large body of literature on inference for mixture models. 

See for example, Titterington et al. (1985) and Mclachlan & Basford (1988) for parametric 

models, and Hall & Zhou (2003) for nonparametric models. Most of these papers address 

non-censored outcomes. For many genetic epidemiological studies of disease risk 

distributions, two features distinguish them from other censored mixture models. First, each 

subgroup in the mixture model is biologically meaningful and corresponds to mutation 

carriers or non-carriers; second, the mixing probability is usually known to the investigators 

or can be inferred from family pedigrees and other external sources. For example, in a case-

control genetic study with valid family history information on relatives (Marder et al., 

2003), the probability of a relative having a certain genotype is obtained through the 

relationship between relatives and probands under Mendelian assumptions (Wacholder et 

al., 1998; Zhang et al., 2010; Wang et al., 2012; Qin et al., 2014). In haplotype studies, the 

probability of a certain haplotype can be inferred from unphased genotypes under Hardy–
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Weinberg equilibrium (Zeng et al., 2006), from external sources such as the HapMap 

project, or from sequencing data (Yang et al., 2013).

One application of this paper is to a recent study on age-specific risk of Parkinson's disease 

associated with mutations in the leucine-rich repeat kinase 2 gene (Paisán-Ruíz et al., 2004; 

Healy et al., 2008). Although Parkinson's disease is traditionally considered a non-genetic 

disorder, recent studies have identified genetic risk factors for Parkinson's disease especially 

in more genetically homogeneous sub-populations such as Ashkenazi Jews (Trinh, 2013). 

The goal of the current study is to estimate age-specific risk of Parkinson's disease in 

Ashkenazi Jews for the leucine-rich repeat kinase 2 gene mutation carriers and compare it to 

non-carriers. Since the leucine-rich repeat kinase 2 mutations have low prevalence, it is not 

efficient to randomly sample individuals from the Ashkenazi population. Instead, the study 

used the kin-cohort design (Wacholder et al., 1998) which was initially implemented to 

study genetic risks of breast cancer. In our study, an initial sample of individuals with 

Parkinson's disease referred as probands were sequenced for the leucine-rich repeat kinase 2 

mutations and provided age-at-onset information for their first-degree relatives. Most of the 

relatives were not genotyped due to limited resources and therefore had unknown leucine-

rich repeat kinase 2 mutation status. In addition, for older relatives who were deceased, it 

was not possible to collect blood samples.

Several existing works consider estimating distribution functions for such mixture data in a 

parametric or semiparametric framework (e.g., Diao & Lin, 2005; Zhang et al., 2010). When 

concerns over model misspecification arise in practice (e.g., Langbehn et al., 2004), a 

nonparametric model and inference through nonparametric maximum likelihood estimation 

are natural. However, although the Kaplan–Meier estimator is nonparametric efficient for 

censored data, nonparametric maximum likelihood estimators are either inconsistent or 

inefficient for mixture data (Wang et al., 2012). To account for censoring and the mixture 

nature of the problem while ensuring monotonicity of the estimated distribution function on 

the entire support, Qin et al. (2014) proposed methods based on a binomial likelihood and a 

sequence of nonparametric estimates performed by reducing censored data to current status 

data and implementing the expectation-maximization algorithm (Larid & Ware, 1982) with 

the pooled-adjacent-violators algorithm. However, this method is not guaranteed to be 

efficient and can be computationally intensive. Other works involving a nonparametric 

model based on estimating equations and weighting of Kaplan–Meier survival curves 

include Wacholder et al. (1998) and Fine et al. (2004).

In this work, we propose a sieve maximum likelihood estimation method to estimate disease 

risk associated with genetic mutations in censored mixture models. Specifically, we utilize 

sieve estimation based on B-splines to estimate the log-hazard ratios between the carriers 

and non-carriers, while the nonparametric maximum likelihood estimator is used to estimate 

the reference baseline hazard function. The derived estimators for the disease risk 

distributions are guaranteed to be asymptotically efficient. Furthermore, the calculation of 

the sieve maximum likelihood estimators can be easily implemented via an expectation-

maximization algorithm which converges much faster than existing algorithms, due to 

closed form solutions in the M-step. We tackle the theoretical challenge when one functional 

parameter is estimated using a nonparametric maximum likelihood estimator while the other 
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parameter is estimated using a sieve estimator. We demonstrate substantial efficiency gains 

of the proposed method by simulation. Finally, we apply our method to estimate the age-at-

onset of Parkinson's disease for individuals with deleterious leucine-rich repeat kinase 2 

mutations (Goldwurm et al., 2011).

2. Method and Inference Procedure

2·1. Data and likelihood function

Let Ti be the age-at-onset of a disease which is subject to random censoring. Let Bi denote 

the potentially missing mutation status, with 1 indicating the carrier group where each 

individual has at least one copy of the mutation, and 2 indicating the non-carrier group. As 

in the Parkinson's disease study described in Section 1, the probability of being a carrier 

takes a finite number of values. For example, a child of a heterozygote carrier parent has a 

probability of 0·5 of carrying this mutation under the Mendelian assumption, so if the 

mutation prevalence in the general population is denoted as f, we have pr(B = 1) = 0.5(1 + f) 

for this child. For individuals with observed carrier status, pr(B = 1) equals 1 for carriers and 

0 for non-carriers. We denote the finite set of values for the probability pr(B = 1) by p1, . . ., 

pm. Our goal is to estimate the risk distribution of the age-at-onset in the mutation group and 

no-mutation group, that is, F1(t) = pr(T ≤ t | B = 1) and F2(t) = pr(T ≤ t | B = 2), respectively.

Due to right censoring, the observations from n individuals consist of {Yi = Ti ∧ Ci, Δi = I(Ti 

≤ Ci), pr(Bi = 1)}, i = 1, . . ., n, where Ci denotes the censoring time assumed to be 

independent of Ti. We introduce an indicator variable Gi to denote m distinct mixing 

probabilities, so Gi = g indicates pr(Bi = 1) = pg (g = 1, . . ., m). After grouping individuals 

with the same pg value together, the likelihood function can be written as

where fk is the density function corresponding to Fk (k = 1, 2). Our interest is to estimate Fk.

In survival analysis, it is usually more convenient to re-write the observed likelihood 

function using hazard functions instead of distribution functions. Let λk(t) be the hazard 

function for T in the group with B = k, and let Λk(t) be the corresponding cumulative hazard 

function. Then the likelihood function can be re-expressed as

(1)

The goal is to maximize the likelihood function (1) to estimate Λ1(t) and Λ2(t) 

nonparametrically and thus to obtain the age-at-onset distributions, F1(t) and F2(t). In the 

likelihood function (1), pg equals 1 or 0 if an individual is observed to be a carrier or non-

carrier respectively.
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2·2. Sieve maximum likelihood estimation

At first glance, to estimate Λ1 or Λ2 in (1), one may consider a nonparametric maximum 

likelihood estimator (Zeng & Lin, 2010), where Λ1 or Λ2 are treated as step functions with 

jumps at the observed event times. However, due to ambiguous support points for event 

times when the mutation group membership is not observed, the nonparametric maximum 

likelihood estimator may not be consistent and its bias was observed in simulations even for 

very large samples (Ma & Wang, 2012; Wang et al., 2012). We therefore propose a hybrid 

approach involving nonparametric estimator and sieve maximum likelihood estimators that 

leads to consistent and semiparametric efficient estimation.

Define β(t) = log{λ1(t)/λ2(t)}, so . The likelihood in (1) can be 

re-expressed as

(2)

To maximize (2), consider using a nonparametric maximum likelihood estimator to estimate 

the cumulative hazard function in the baseline group, say, Λ2(t), but adopting a sieve 

approximation to estimate β(t). Specifically, we assume that Λ2 jumps at observed Yi's with 

Δi = 1, and we use a sieve approximation for the log-hazard ratio β(t), letting 

, where ϕ1, . . ., ϕKn are basis functions for the sieve approximation. 

The resulting estimator maximizes a partially smoothed likelihood, where the smoothing is 

performed on the hazard ratio function. The use of a smoothed approximation enables one to 

borrow information to estimate Λ1(t) and thus avoid specifying its ambiguous support points 

as required for the nonparametric maximum likelihood estimator. In our implementation, we 

choose B-splines as the basis functions: We let the spline knots be 0 = t1 = ··· = tl < tl+1 < ··· 

< τ = tmn+l = tmn+l+1 = ··· = tmn+2l, where τ is the study duration, mn is an integer to be 

chosen in a data-driven fashion, and l is the order of the B-splines. There is a total of Kn = 

mn + l B-spline basis functions, denoted as {ϕj : j = 1, . . ., Kn}.

Using the nonparametric maximum likelihood estimator for Λ2 and the sieve estimate for 

β(t), we aim to maximize (2) or its logarithm over all the parameters including the jumps of 

Λ2 and the spline coefficients α1, . . ., αKn. Direct maximization is computationally intensive 

and inefficient since the log-likelihood is not convex and the parameters include the 

potentially many jumps of Λ2. However, using the expectation-maximization algorithm with 

B1, . . ., Bn, the mutation status of all individuals, treated as missing data, fast numerical 

convergence can be obtained due to various closed-form solutions in the M-step.

Assuming that the Bi were observed, the complete data log-likelihood function for (Yi, Δi, Bi, 

Gi), i = 1, . . ., n, is
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where δΛ2(y) denotes the jump of Λ2 at y. Therefore, the expectation-maximization 

algorithm consists of the following E- and M-steps. In the E-step, we evaluate the 

conditional probability of Bi = 1 given the data (Gi, Yi, Δi),

In the M-step, we maximize

(3)

By differentiating (3) with respect to the jumps of Λ2, we obtain a closed form solution

(4)

After inserting (4) into (3) and differentiating with respect to the αs, we obtain αs that solve 

the estimating equation

(5)

which is easily solved using the Newton–Raphson method. With updated α's, we use (4) to 

update the jumps of Λ2(·). We iterate between the E- and M-steps until convergence. We 

denote the final estimators by  and . Although we choose Λ2 as 

the baseline group for the nonparametric maximum likelihood estimation and use sieve 

estimation to obtain a time-dependent log-hazard ratio of the first group versus the second 

group, the procedure can also be reversed by treating Λ1 as the baseline group. In the 
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subsequent arguments, for the ease of theoretical justification, we will denote this reversely 

estimated  as an estimator of Λ1(t) instead of using . 

Empirically, we find that these two estimators of Λ1 are almost identical.

Our theoretical results show that  converges in distribution to a Gaussian 

process after normalization. To estimate its asymptotic variance, following results in Zeng & 

Lin (2010), one approach is to compute the observed information matrix for the jump sizes 

of  and  and use the inverse of this matrix to estimate the asymptotic covariance of 

and . However, this approach may be numerically unstable due to inversion of a 

potentially high-dimensional information matrix. Alternatively, bootstrapping can be used to 

estimate their asymptotic covariance. Our numerical experience shows that 100 bootstrap 

samples are usually sufficient. In our algorithm, Λ2 is updated using the closed form in (4) 

and the α's are obtained via the one-step Newton–Raphson solution to (5). Therefore, the 

computational burden is much less than existing methods.

Finally, using the proposed nonparametric estimators for Fk(t) ≡ 1 – exp{–Λk(t)} , that is, 

, we can construct a variety of test statistics to compare the 

carrier group and the non-carrier group. One test statistic is based on the Kolmogorov–

Smirnov test . When , we reject the null hypothesis 

that there is no difference between the disease risk distributions of the two groups. Here, α is 

the significance level and cα is the (1 – α)-quantile of the sampling distribution of  under 

permutations where the variables Gi's are permuted. Other test statistics can be 

, where ω(t) is a user-defined weight function that may 

focus on a specific time range.

2·3. Generalization to cure rate survival data

The proposed method can be generalized to analyze cure rate survival data, in which some 

individuals are considered to be immune to the disease of interest. To this end, we introduce 

a binary indicator Z to denote cure status. We assume that pr(Z = 1 | B = k) = rk and the 

disease risk function among non-cured population is 

. The observed data consist of 

(Yi, Δi, Gi, ΔiZi) (i = 1, . . ., n), where Δi indicates either diseased or cured. That is, for non-

censored individuals, we observe some individuals, usually those who have not experienced 

disease after a certain age, to be cured. However, the cured status for the censored 

individuals is unknown. Thus, if defining , the 

observed likelihood function becomes

(6)
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We can estimate the cure rates rk by maximizing the last part of expression (6), while we 

estimate Λk(t) by maximizing the first part using the sieve method proposed in Section 2·2. 

Finally, we estimate Fk̃(t) via F̃
k(t) = {1 – e–Λk(t)} / (1 – rk) (k = 1, 2).

3. Asymptotic Results

Let λk0 and Λk0 be the true hazard rates and the cumulative hazard functions for group k, (k 

= 1, 2) under the setting of Sections 2.1 and 2.2. Then the true log-hazard ratio is β0(t) = 

log{λ10(t)/λ20(t)}. We need the following conditions:

Condition 1

Both λ10(t) and λ20(t) are r times continuously differentiable in [0, τ], where r ≥ 2. In 

addition, there exist g1 and g2 such that pg1/pg2 ≠ (1 – pg1)/(1 – pg2).

Condition 2

The density of C has bounded and continuous rth derivative in [0, τ], and C is independent 

of T conditional on G.

Condition 3

The number of interior knots mn satisfies  and , as n goes to 

infinity.

Conditions 1 and 2 are the regularity conditions for the underlying density functions of T in 

both groups. The second part of Condition 1 ensures that the data contain at least two 

distinct kinds of pg to ensure identifiability of the underlying distributions. In Condition 3, 

one particular choice for the number of the interior knots is mn = nv, where 1/(4r) < v ≤ 1/3. 

Under these conditions, our first theorem gives the uniform consistency of  and  in 

[0, τ].

Theorem 1—Under Conditions 1, 2 and 3 and the setting of Sections 2.1 and 2.2,

To describe the asymptotic distributions of  and , we first introduce the sets 

 has a total variance bounded by 1 in [0, τ]} and  has its r 

th derivative bounded by 1 in [0, τ]}. We then treat both  and  as bounded stochastic 

processes in  by defining . Similarly, we 

treat  as a stochastic process on  as . The 

following theorem shows the weak convergence of these stochastic processes.

Theorem 2—Consider  as a stochastic process in 

. Then under Conditions 1, 2 and 3 and the setting of Sections 2.1 and 2.2, 
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 converges in distribution to a mean-zero 

Gaussian process in , as n → ∞. Furthermore,  and  are 

semiparametrically efficient in terms of the definition in Bickel et al. (1993). In addition, as 

a stochastic process in  converges in distribution to a mean-zero 

Gaussian process, as n → ∞.

Remark 1

Theorem 2 establishes that  and  converge 

distribution to some Gaussian process in l∞ ([0, τ]). By the delta method, this also holds for 

the corresponding distribution function estimators,  and 

. Thus the sieve nonparametric maximum likelihood estimators 

F̂
1n and F̂

2n achieve the semiparametric efficiency bound and are optimal for the censored 

mixture data.

Here, semiparametric efficiency is defined in the sense of Bickel et al. (1993, Chapter 6). 

Theorem 2 shows that F̂
k, as a function estimator in BV[0, τ], is semiparametrically 

efficient, which means that any bounded linear functional of F̂
k achieves its efficiency 

bound asymptotically. The weak convergence in Theorem 2 ensures that we can construct a 

valid confidence band based on these estimators. The proofs of Theorems 1 and 2 are in the 

Appendix. The main technical challenge is to handle the mixed convergence rates of the 

infinite-dimensional parameter estimators, since  has a n1/2-convergence rate while 

 has a slower convergence rate. In the proof of Theorem 2, with the derived rates for 

 and  under some suitable norms, the master Z-theorem in Section 3·3 of van der 

Vaart & Wellner (1996) is implemented to derive the asymptotic distributions of the 

estimators. These theorems hold for the estimators using the cure rate survival data due to 

the similar likelihood function in the estimation. Although the proposed method is fully 

efficient based on the assumption of independent Ti given the mutation status Bi, it can be 

easily generalized to correlated family data by maximizing

where i indicates the family and j indicates an individual in the family. In this case, the 

proposed inference procedure including the expectation-maximization algorithm and 

bootstrap over independent families is still valid, and Theorems 1 and 2 hold except that the 

derived estimators may not achieve the semiparametric efficiency bound due to the 

maximization of a marginal likelihood.

4. Simulation Studies

Extensive simulation studies were conducted to compare the small sample performances of 

the proposed and existing methods. Our first simulation study used the same distribution 
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functions as in Qin et al. (2014). Specifically, for the carriers, F1(t) = {1 – exp(–t)}/{1 – 

exp(–10)}, while for the non-carriers, F2(t) = {1 – exp(–t/2·8)}/{1 – exp(–10/2·8)} for 0 ≤ t 

≤ 10. The mutation probability pi was randomly chosen from either the set Case I: (1, 0·6, 

0·2, 0·16) or Case II: (0·75, 0·6, 0·5, 0·16). The censoring time followed a uniform 

distribution to yield a censoring rate of 20% or 40%. In the second simulation study, we 

imitated the results from the Parkinson's disease study described in Section 5: we generated 

survival times for carriers and non-carriers using distributions similar to the estimated 

distributions in the actual data, F1 = Weibull (5·0, 102), F2 = Weibull (5·0, 125). 

Furthermore, the sample size was n = 2275 and the mutation probability pi was taken from 

(0, 0·02, 0·51, 1), as in the real example. The censoring times were generated from a uniform 

distribution to achieve a censoring rate of 40% or 80%.

When implementing our method, we used the cubic B-spline functions to estimate β(t). The 

number of knots was set at mn = ⌊n1/3⌋ – 1 and the location each interior knot was selected 

to evenly distributed at the quantiles of the observed failure times. Some neighboring knots 

were combined if the data were found to be too sparse to stably estimate the coefficient of a 

particular basis function. We also experimented with the number of interior knots as mn/2 or 

2mn, and the estimates for Λ1(t) and Λ2(t) varied very little. To avoid local maximization in 

the expectation-maximization algorithm, we used different initial estimators including the 

estimates from a published method such as Qin et al. (2014). Empirically, our algorithm 

converged to the same results. We used 500 bootstrap samples for variance estimation. 

Furthermore, we compared our method with the estimator in Qin et al. (2014), which 

sequentially censored the observed event times to construct a binomial likelihood and 

applied the pooled-adjacent-violators algorithm for estimation.

The simulation results from 500 replicates for the first scenario are given in Table 1. We 

present the average estimated values of the cumulative distribution functions F1 and F2 at 

various quartiles. Table 1 suggests that both the sieve estimator and the method of Qin et al. 

(2014) have small bias, the variance estimate based on bootstrap agrees adequately with the 

empirical variability, and the coverage probabilities are close to the nominal level. The sieve 

estimator is more efficient than the method of Qin et al. (2014) in all simulation settings, and 

the efficiency gain, which can be as large as 60%, is more evident for the upper quartiles and 

for the higher censoring rate. A similar advantage of the sieve estimators is seen in Table 2 

for the second simulation scenario. Our method performs well even under 80% censoring. 

The efficiency gain is up to 15%. In the Supplementary Material, we report root integrated 

mean squared errors and the average of the point-wise variance for the estimators of Λ's. Our 

estimators for Λ's have smaller estimation errors than those of Qin et al. (2014), especially 

for the estimation of Λ1.

We performed two additional simulations with crossed distributions. The results are reported 

in the Supplementary Material simulations 3 and 4. The findings are similar. Finally, we also 

conducted simulation studies to evaluate the permutation test for the Kolmogorov–Smirnov 

statistic comparing the two distributions. The data generation was similar to the second 

simulation study, except that F1 = F2 = Weibull (5·0, 102). The empirical type I error rate is 

4·6% with censoring rate 40% and 5·0% with censoring rate 80%. Both are close to the 

nominal significance level of 5% so the proposed permutation test appears to be valid.
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5. Application

Since mutations in the leucine-rich repeat kinase 2 gene were found to be a potential cause 

of idiopathic Parkinson's disease (Paisán-Ruíz et al., 2004), there has been great interest in 

estimating the cumulative risk of Parkinson's disease for the leucine-rich repeat kinase 2 

mutation carriers, especially in Ashkenazi Jews, who have an increased mutation rate 

(Alcalay et al., 2013). Although such risk estimates are important for genetic counseling 

(Goldwurm et al., 2011), results on the risk for leucine-rich repeat kinase 2 carriers in the 

clinical literature have been inconsistent and estimates vary widely (Goldwurm et al., 2011).

To address these concerns, we aim to estimate the age-specific cumulative risk of 

Parkinson's disease in the leucine-rich repeat kinase 2 carriers and non-carriers. Due to the 

low prevalence of leucine-rich repeat kinase 2 mutations, a kin-cohort design was used 

(Marder et al., 2014). To avoid bias in the ascertainment of the initial samples, our analysis 

units are the first-degree family members excluding the initial probands (e.g., Wacholder et 

al., 1998; Wang et al., 2012). Our initial probands were recruited from the Michael J. Fox 

foundation Ashkenazi Jewish leucine-rich repeat kinase 2 consortium; the details of the 

sample were reported elsewhere (Alcalay et al., 2013). All probands were screened for 

G2019S mutations in leucine-rich repeat kinase 2 gene and common mutations in the 

glucocerebrosidase gene. To isolate the effect of the leucine-rich repeat kinase 2 mutations 

on Parkinson's disease risk, we excluded participants with other known genetic risk factors 

such as glucocerebrosidase mutations. A validated family history instrument (Marder et al., 

2003) was applied to the probands or the first-degree relatives themselves if relatives were 

seen by a neurologist.

The data included information from 2275 first-degree relatives of the probands in the 

Ashkenazi Jewish leucine-rich repeat kinase 2 consortium. There were four groups of 

mutation probabilities, pg ∈ {0, 0·02, 0·51, 1}, with frequencies 1·6%, 70·9%, 25·4% and 

2·1%, respectively. There were only 3·7% of relatives with observed genotypes, that is, their 

corresponding pg is either 1 or 0. The first-degree relatives including parents, siblings or 

children of non-carrier probands have pg =0·02 under a 2% population prevalence of 

leucine-rich repeat kinase 2 in the Ashkenazi Jewish population (Orr-Urtreger et al., 2007) 

and the Mendelian assumption. Similarly, the first-degree relatives of heterozygote carrier 

probands have pg =0·51 under the Mendelian assumption. The censoring rate was close to 

95%. Due to the high censoring rate, we analyzed the data under the cure rate model (6). 

Individuals who did not develop Parkinson's disease by age 95 were considered immune to 

the disease since the largest documented age at onset is 94 years of age (Driver, 2009). In 

the implementation of the proposed sieve maximum likelihood approach, we used the 

Bayesian information criterion to choose the number of interior knots and the degree of the 

B-spline basis. The choices that minimizes this criterion was two interior knots and a degree 

of two. We used bootstrap resampling of families to construct pointwise confidence intervals 

to ensure valid inference.

In the practice of genetic counseling, it is more useful to provide the population cumulative 

risks, that is, Fk(t) in model (6), regardless of the cure survival status. Thus we report the 

estimates of Fk(t) in Table 3. This shows that the cumulative risk of Parkinson's disease by 
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age 80 for carriers can be as high as 27·4% with 95% confidence interval 17·6%–39·1%, 

while it is 10·4% with 95% confidence interval 7·8%–13·2% for non-carriers. The risk of 

Parkinson's disease in non-carriers is quite high compared to general non-Ashkenazi Jews, 

whose risk is normally 1%, indicating that they may have other risk mutations for 

Parkinson's disease. The estimated lifetime cumulative risk is consistent with some previous 

findings in Ashkenazi Jews for leucine-rich repeat kinase 2 mutation carriers (Wang et al., 

2008), but it contrasts with some other studies, which estimate risk of Parkinson's disease to 

be 100% in leucine-rich repeat kinase 2 carriers (Lesage, 2005). Methodological issues 

including assigning individuals with unobserved leucine-rich repeat kinase 2 genotypes to 

carrier or non-carrier groups based on their Parkinson's disease status may have contributed 

to this large difference with those studies. Figure 1 presents the estimated cumulative 

Parkinson's disease distributions in the two mutation groups and their pointwise confidence 

intervals. The carrier group has a dramatic increase of the risk of Parkinson's disease after 

age 60 as compared to a slower increase in the disease risk in the non-carrier group.

To compare the distributions, we used the Kolmogorov–Smirnov test to examine the 

maximal difference between the two groups. We computed the p-value for this test based on 

1,000 permutations, where for each permutation, the grouping variable Gi was perturbed. 

The resulting p-value is less than 0·001. It may be of practical interest to examine some 

classes of parametric models for the genetic risk functions. For example, within the class of 

Weibull distributions, we find the estimated distribution for the carriers is adequately 

approximated by a Weibull distribution with shape and scale parameters 5 and 102, while 

the estimated distribution for the non-carriers is close to a Weibull with shape and scale 

parameters 5 and 125.

The cure rates in carriers and non-carriers were estimated to be 0·3% with 95% confidence 

interval 0%– 19·8% and 26·6% with 95% confidence interval 17·9%–34·6%, respectively. 

There is a of significant difference 26·3% between the two rates with 95% confidence 

interval 3·6%–34·3%. In the non-cured population, the cumulative risk of Parkinson's 

disease for carriers by age 80 was 27·5%, that is, F1̃(t) as defined in Section 2·3 was 27·5% 

at age 80, compared to 14·2% for the non-carrier group. The low cure rate in the carrier 

group suggests a high risk of Parkinson's disease had a subject lived long enough. This 

observation is consistent with the existing clinical literature. For example, Latourelle et al. 

(2008) reported a high lifetime risk of Parkinson's disease, where the median risk of disease 

was about 70% and the upper limit of the 95% confidence interval was about 80%.

6. Discussion

One interesting theoretical is to tackle the different convergence rates of the nonparametric 

maximum likelihood and the sieve estimators based on B-splines. Alternatively, sieve 

estimation can also be applied to Λ2, as done by Cheng & Wang (2011) for a semiparametric 

additive transformation model with current status data. However, one advantage of using the 

nonparametric maximum likelihood estimator for Λ2 is that there is no need to determine the 

number of sieves. In addition, our nonparametric maximum likelihood estimator has an 

explicit solution in the M-step of the expectation-maximization algorithm, which leads to 

computational gain.
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Using the re-parametrized likelihood function (2), the proposed method can be readily 

generalized to regression problems where other environmental covariates are included 

through a proportional hazards model in both groups (Diao & Lin, 2005). Lastly, to 

efficiently analyze family data, an alternative method using frailty models may be 

considered to account for within-family dependence through shared frailties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Before proving Theorem 1 and Theorem 2, we first show that the information operator for 

Λ2 and β is invertible. For G = g, we define

where , and 

. The log-

likelihood function for a single subject is

By differentiating l(Λ2, β) with respect to Λ2 and β along sub-models dΛ2(1 + εh1) and β + 

εh2 respectively, we obtain the following score operators 

 Thus, if we define 〈f1, f2〉 = 

E(f1 f2), for any L2(P)-integrable functions {w1(Δ, G, Y), w2(Δ, G, Y)}, we have
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Thus,

where  is the dual operator of (lΛ2, lβ). Therefore, the information operator 

 can be expressed as a Fredholm operator of the first kind, 

which is the summation of an invertible operator and an integral operator when Λ2 = Λ20 

and β = β0. As a result, to show that  is invertible, following Rudin (1973), it 

suffices to show that  is one-to-one. That is, we need to prove that for any h1 and 

h2 if , which is equivalent to lΛ20 (h1) + lβ0 (h2) = 0, then h1 ≡ 0 and 

h2 ≡ 0. Suppose that lΛ20 (h1) + lβ0 (h2) = 0, let Δ = 1 and G = g and integrate Y from 0 to 

any t ∈ [0, τ], we then obtain . 

Thus, pg{h1(t) + h2(t)}eβ0(t) + (1 – pg)h2(t) = 0. From Condition 1, we immediately conclude 

that h1 = h2 ≡ 0. Therefore,  is continuously invertible.

Furthermore, we consider a different Banach space 

. Then the above arguments still hold. Hence, 

the invertibility of  implies  where c is a 

constant. Furthermore, if ∥Λ2 – Λ20∥∞ + ∥β – β0∥∞ < ε0 for a small ε0, the continuity of 

in this space gives

We will use this fact in the following consistency proof.

Proof of Theorem 1

We define a sieve space
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First, we show that there exists a local maximum of the observed data likelihood function 

over Sn such that the proposed estimators  converge to the true parameters in 

probability under the norm ∥ · ∥∞.

By Schumaker (2007) and Condition 1 there exists a function  such 

that . Then we consider the neighborhood of  in the following sieve 

space  where εn is 

to be chosen later. For each , we define  Pnl(Λ2, β), where Λ2 is a 

step function with jumps at the observed failure events. If we chose εn such that 

, then for ,

Therefore, β has bounded total variation. Define

it is easy to see that . Therefore, , 

where Pn denotes the empirical measure. Note that  equals

It is easy to show that , so we conclude that there exist constants c1 and 

c2 independent of β such that
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Hence,  is bounded from below in probability. 

since  is less than 

 is finite with 

probability tending to one. As a result,  consists of bounded and increasing 

functions.

From the fact that , we obtain 

. The left-side of this equation is Op(n–1/2), 

because lΛ2 is Donsker due to the fact that both Λ2,β and β belong to BV[0, τ]. We apply the 

Taylor expansion at the true (Λ20, β0) to the right-hand side, then we have

where  is the operator in  corresponding to Λ2. Using the invertibility of , we have 

, where  is a bounded random 

variable.

We now consider . First, 

. The first term 

on the right hand side is equal to cnn–1/2, where . For the second term, we 

apply the expansion at the true values and obtain

where  is between  and (Λ20, β0). Thus, we obtain 

, where . Therefore, if 

, the result from Boor (1978) gives , so that 

. Hence, if we choose 

WANG et al. Page 16

Biometrika. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



, then Bn < 0, noting that such εn still satisfies 

 due to r ≥ 2 and Condition 3. That is, there exists a local maximum  within 

this neighborhood. Consequently,  and 

. From the result that 

, the corresponding  satisfies 

. It implies 

. By reversing the labels, the 

same argument implies . The proof of Theorem 1 is 

completed.

Proof of Theorem 2

For any h1 ∈ BV[0, τ] and any h2 with bounded rth derivative in [0, τ], we have 

 and . Here, h2n is the projection of h2 on 

Sn, and . This gives

(A1)

where Gn = n1/2(Pn – P). It is straightforward to verify 

 is a Donsker class. 

Thus, the left-hand side of equation (A1) is equal to 

 where op(1) here and in the sequel 

refers to some random element that converges in probability to zero uniformly in (h1, h2).

By the Taylor expansion, the right-hand side of equation (A1) equals

where . This yields that

where . That is, 

converges in distribution to mean-zero Gaussian process in . Finally, since 

 is obtained using the same estimation as  by reversing group labels, a similar 
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asymptotically linear expansion holds for . Hence, we conclude that 

 converges in distribution to a mean-zero 

Gaussian process in .

From the asymptotic linear expansion of , we note that for any fixed 

t, the influence function of  is on the tangent space of the score functions. Therefore, the 

estimators are semi-parametrically efficient in metric space  according to 

Theorem 18.8 in Kosorok (2008). We have completed the proof of Theorem 2.
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Fig. 1. 
Estimated cumulative risk functions for Parkinson's disease onset in the leucine-rich repeat 

kinase 2 carriers and non-carriers. The solid curve is the estimated distribution function for 

carriers and the dashed curve is for non-carriers. The dotted curves are their pointwise 95% 

confidence intervals. The shaded regions indicate area covered in the pointwise confidence 

interval.
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Table 2

Summary results for the estimated distribution functions in the second simulation scenario (×10–2)

Proposed EM-PAVA

Censoring Bias SD SE CP Bias SD Ratio

40% F1(Q0·25) –0·1 3·1 3·2 95 0·0 3·3 110·3

F1(Q0·50) –0·1 3·8 4·1 96 0·0 3·8 103·3

F1(Q0·75) –0·4 3·7 4·1 96 0·0 4·0 115·1

F2(Q0·25) 0·1 1·3 1·3 94 0·1 1·3 103·2

F2(Q0·50) 0·1 1·6 1·5 94 0·0 1·6 100·5

F2(Q0·75) 0·2 1·4 1·3 93 0·0 1·4 103·9

80% F1(Q0·25) –0·4 4·2 4·1 94 –0·3 4·3 102·5

F1(Q0·50) –0·7 5·4 5·8 94 –0·4 5·6 104·7

F1(Q0·75) –1·1 6·0 6·5 95 –0·3 6·4 112·5

F2(Q0·25) 0·1 1·8 1·8 95 0·0 1·8 100·8

F2(Q0·50) 0·2 2·5 2·6 95 0·0 2·5 101·4

F2(Q0·75) –0·2 4·0 3·7 93 1·0 4·2 107·2

For footnotes see Table 1.
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Table 3

Estimated cumulative risk of Parkinson's disease onset in leucine-rich repeat kinase 2 carriers and non-carriers 

in the Ashkenazi Jewish leucine-rich repeat kinase 2 Consortium study (×10–2)

Carrier F1(·) Non-Carrier F2(·)

Age Est. SE 95% CI Est. SE 95% CI

20 0·0 0·0 (0·0, 0·1) 0·1 0·1 (0·0, 0·3)

30 0·1 0·1 (0·0, 0·3) 0·1 0·1 (0·0, 0·3)

40 0·3 0·4 (0·0, 1·4) 0·2 0·1 (0·0, 0·4)

50 1·8 0·8 (0·5, 3·4) 0·6 0·2 (0·3, 1·1)

60 8·1 1·9 (4·8, 12·5) 2·8 0·6 (1·6, 4·1)

70 18·3 3·9 (11·2, 26·2) 6·8 1·1 (4·9, 9·0)

80 27·4 5·7 (17·6, 39·1) 10·4 1·4 (7·8, 13·2)

95% CI, 95% confidence interval for estimated value.
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