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Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma 
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Abstract 
 

Multiple myeloma (MM), a plasma cell (PC) malignancy, is the second most common blood cancer. 
Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early 
diagnosis and improved treatments. Here, we apply scRNA-seq to study the heterogeneity of 40 
individuals along MM progression spectrum including 11 healthy controls, demonstrating high inter- 
patient variability that can be explained by expression of known MM drivers and additional putative 
factors. We identify extensive sub-clonal structures for 10/29 patients. In asymptomatic patients with 
early disease and in minimal residual disease post-treatment, we detect rare tumor-PC with similar 
molecular characteristics of active myeloma, with possible implications for personalized therapies. 
Single cell analysis of rare circulating-tumor-cells (CTC) allows for accurate liquid biopsy and 
detection of malignant PC, which reflect the patient BM disease. Our work establishes scRNA-seq for 
dissecting blood malignancies and devising detailed molecular characterization of tumor cells in 
symptomatic and asymptomatic patients. 
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Introduction 
 

Multiple myeloma (MM) is a neoplastic plasma cell (PC) disorder that is characterized by clonal 
proliferation of malignant PC in the bone marrow (BM). Despite improved survival rates in the last 
decade, therapy is not curative and almost all patients relapse2. The clinical spectrum of the disease 
includes asymptomatic conditions: Monoclonal gammopathy of undetermined significance (MGUS), a 
condition with limited suspected malignant PC in the BM, and monoclonal antibodies in the blood (M- 
protein); or smoldering myeloma (SMM), a more advanced stage with higher proportion of malignant 
PC and/or M-protein in the blood3,4. The rate of progression from MGUS and SMM into active myeloma 
is approximately 1% and 10% per year, respectively5. The genetic landscape underlying myeloma was 
mapped in several foundational genomic studies6–10. Furthermore, the gene expression profiling cohorts 
of MM patients (e.g. the Multiple Myeloma Research Foundation’s CoMMpass Study) have shown to 
be effective in predicting the risk of disease progression and survival11–13. They also highlighted over- 
expression of several oncogenic drivers and pathways including CCND1, FGFR3, NSD2/MMSET, 
MAFB and others. 

 
The progressive nature of the disease makes it essential to develop tools for risk stratification and early 
detection of pre-malignant states, including solutions for molecular characterization of BM aspiration 
procedures and accurate ‘liquid biopsies’. The large PC heterogeneity in early disease stages makes it 
difficult to evaluate precisely the state of asymptomatic patients, severely limiting the possibilities for 
preventive treatments and restricting clinical practice to “watchful waiting”5. Yet, current strategies for 
genomic sequencing and transcriptional analysis in cancer were developed for mapping bulk samples 
from primary tumors and metastases and are therefore lacking the resolution and accuracy for 
characterizing small tumorigenic sub-populations that are likely driving MGUS, SMM and MM 
residual disease progression. Single cell genomic technologies are opening the way for the development 
of such assays14–19. 

 
Here, we report the first comprehensive single cell RNA profiling of newly diagnosed asymptomatic (7 
MGUS and 6 SMM) and symptomatic (12 MM and 4 AL amyloidosis) patients encompassing the 
different clinical spectra of plasma cell pre-malignant and neoplastic states. We characterized 20,586 
single PC from the BM and 3,540 single PC from the blood of 11 control individuals and 29 newly 
diagnosed patients. We found minimal inter-donor heterogeneity for controls, showing that normal PC 
from the BM are reproducibly organized into transcriptional states that represent variable activity of 
genes associated with ER stress and PC physiology20. In contrast, MM patients show highly diverse cell 
states, with every patient defining a unique and individual PC transcriptional program. Importantly, the 
different patients overexpress common known MM oncogenic drivers: CCND1 (11/29), FRZB (11/29) 
NSD2/MMSET (2/29), and several uncharacterized overexpressed MM markers that can be confirmed 
in the larger CoMMpass database, including the lysosomal associated membrane protein LAMP5 (5/29), 
the endopeptidase inhibitor WFDC2 (2/29), and a small intronless gene located in the X chromosome, 
CDR1 (5/29). Intra-patient transcriptional heterogeneity was also observed for 10 patients, in most of 
the cases with the same immunoglobulin (Ig) clonotype. Using the scRNA-seq transcriptional data we 
infer copy number alterations (sciCNA) by averaging the relative expression of a large number of 
genomically adjacent genes and show that in MM transcriptional changes are many times regulated in 
trans, and may be associated indirectly to genomic aberrations. By profiling single PC from the blood, 
we further identify efficient molecular markers (e.g. CD52) to enrich for circulating tumor cells (CTC), 
and show that in all cases with paired CTC and BM (15/15), the CTC in the blood reflect the molecular 
disease observed in the BM. Furthermore, in follow up analysis of 5 of our patients post-therapy, we 
detect rare malignant cells, and show that the residual malignant PC share most of the transcriptional 
state with the original cells at diagnosis. In summary, our work demonstrates that scRNA-seq is a 
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powerful tool for dissecting the heterogeneity in MM patients and identifies new pathways and potential 
targets for diagnosis and therapy in symptomatic and asymptomatic myeloma. Further sampling of a 
larger cohort of patients pre- and post- therapy can potentially help in prioritizing efficient and 
personalized treatment for MM patients. 

 
 
 

Results 
 

MM patients display unique signatures that converge into defined malignant pathways 
 

In order to better understand the heterogeneity within and across MM patients, we designed a protocol 
for single cell transcriptomic characterization of the BM PC, as well as circulating PC from MGUS, 
SMM, MM and primary light chain AL amyloidosis (AL) patients (Fig. S1). Our design was focused 
on maintaining the in situ RNA composition of the patients’ samples by instant cooling in the operating 
room of the BM and blood, and immediate sorting of fresh cells for MARS-seq analysis21. We calibrated 
a validated flow cytometry - based method for isolation of PC (CD138+, CD38+) linking the intensity 
of the markers in each cell with its expression profile using an index-sorting strategy (Fig. S2). This 
allows for retrospective analysis of surface marker combinations for each individual cell22. We obtained 
fresh BM samples from 29 newly diagnosed patients with plasma cell neoplasms (Table 1 and Table 
S1). Profiling the normal diversity of plasma cells in an age-matched control cohort is essential to 
understand the heterogeneity of the normal and malignant PC disease states. To obtain normal BM with 
similar age to our patient cohort, we selected 11 older-adults and elderly subjects (median age 64 years, 
range 45-83, 5 males and 6 females) with isolated hip osteoarthritis, and without other medical co- 
morbidities, or active inflammatory processes, and extracted BM from the proximal femur bony canal 
during hip replacement surgery23. 

 
Following removal of low-quality cells, unsupervised clustering of 20,568 bone marrow plasma cells 
sorted from the 29 newly diagnosed patients: 7 MGUS (MGUS01-07); 6 SMM (SMM01-06); 12 MM 
(MM01-12) and 4 amyloidosis (AL01-04), as well as 11 control subjects (hip01-11), created a detailed 
map comprising 29 transcriptionally homogeneous subpopulations covering the spectrum of plasma 
cell neoplasms (Fig. 1A, Fig. S3, Fig. S4 and Fig. S5). Despite a stringent sorting scheme for BM PC, 
3,179 contaminating (non-plasma) cells were in silico removed, prior to clustering, based on their 
transcriptional signatures (Fig. S4; Methods). Plasma cell sub-populations were based on cluster- 
specific expression patterns of the 1,500 most variable genes discarding immunoglobulin (Ig) genes 
(Fig. S5 and Table S2). Clusters C1-2 are associated to the control group of hip replacement 
individuals, representing normal PC with minor donor specific enrichments in these clusters. Cluster 
C2 represents long-lived plasma cells, evident by high expression of CXCR4 and TXNIP (Fig. S5 and 
Fig. S6)20,24. Cluster C1 shows a similar transcriptional profile, with lower levels of CXCR4 and TXNIP 
and a gradient of CD81 and CD19 protein surface marker expression (Fig. S5 and Fig. S6). Notably, 
we detect variable frequency of cells with normal PC phenotype in most patients, especially in the 
asymptomatic patients (Fig. 1A-C). Interestingly, in these patients the normal PC are more similar to 
short-lived PC expressing low levels of CXCR4 and TXNIP (Fig. S6). In contrast, clusters C3-29 
represent patient specific transcriptional state(s), with each patient characterized by an almost unique 
PC transcriptional program (Fig. 1 A-D, Fig. S5 and Table S3). Although each patient is unique, we 
detected common overexpressed pathways shared across sub-groups of patients, such as CCND1, 
CCND2 and NSD2-FGFR3 groups (Fig. 1E and Fig. S6). CCND1-driven malignant PC are observed 
across 11 patients and can be found in 58.7% (476/811) of the CoMMpass database (Fig. 1E). To 
validate if these patients harbor the IGH translocation, or represent other overexpression mechanisms, 
we compared the genomic DNA interphase fluorescent in situ hybridization (iFISH) data of these 
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patients (Methods). We find that 10/11 harbor an IGH translocation event (Table S1). Clusters C20-22, 
C26, C29 are represented by deregulation of the canonical wingless (Wnt) pathway, including 
overexpression of SMAD genes and the soluble frizzled related protein 3 (FRZB, p<1x10-50), also found 
in 68% (553/811) of the CoMMpass database (Fig. 1E, Fig. S6 and Table S5). The tyrosine kinase 
fibroblast growth factor receptor 3 (FGFR3, found in 75/811 patient of the CoMMpass database), a 
known high-risk oncogene in myeloma, is featured in cluster C19 (patient AL03), and confirmed by 
t(4:14) iFISH testing (Fig. 1E and Fig. S7)25,26. We also identified putative MM overexpressed genes 
(all with p<1x10-50) not found in the control cohort, including: Lysosome-associated membrane protein 
like molecule 5 (LAMP5), a protein localized in the ER-Golgi compartment regulated by toll-like 
receptor signaling27 in 5/29 patients (over expressed in 52%, 425/811, in the CoMMpass database); 
Cerebellar degeneration gene 1 (CDR1, a protein with a yet unknown function) in 5/29 patients (over 
expressed in 3.5%, 29/811, in the CoMMpass database); and WAP four-disulfide core domain protein 
2 gene (WFDC2), a secreted proteinase in 2/29 patients (over expressed in 6.7%, 55/811 in the 
CoMMpass database (Fig. 1E and Fig. S6). LAMP5, CDR1 and WFDC2 were previously implicated in 
plasmacytoid dendritic cells, paraneoplastic syndromes, and ovarian carcinoma, respectively, but not in 
MM28–30. Since no mutations and/or aberrations are found near the LAMP5 locus in MM patients, we 
first checked for overexpression of LAMP5 in a database of myeloma cell lines (Multiple Myeloma 
Research Foundation’s characterization of myeloma cell lines), and identified a large number of MM 
cell lines overexpressing LAMP5 (28/75). We then performed chromatin immunoprecipitation followed 
by sequencing (ChIP-seq) of histone 3 lysine 4 di methyl regions (H3K4me2), which marks promoter 
and enhancer regions, in a LAMP5 MM over-expressing cell line (KHM1B) and in a cell line negative 
for LAMP5 (RPMI-8226). While genes in proximity to LAMP5 have a similar normalized H3K4me2 
signal between the two cell lines, the LAMP5 locus reproducibly shows several active regulatory regions 
only in the LAMP5 positive KHM1B cells (Fig. S7). These may represent regulatory regions specific 
to LAMP5 that are activated in MM by trans. Together, we comprehensively profile malignant and 
normal PC using scRNA-seq and show that even the most careful bulk PC sampling contains significant 
contaminants from unrelated immune cells and normal PC. Using the single cell resolution data of 
neoplastic PC, we identify that each patient has its own unique transcriptional signature, and verify 
previously implicated drivers along with putative overexpressed candidate genes. 

 
The transcriptional state of PC is regulated by the interplay of the genome, epigenome and 
environmental contexts. To test if DNA mutations and/or copy number alterations (CNA) can contribute 
to the transcriptional heterogeneity we identified in the different patients, we used a sensitive targeted 
approach to sequence the DNA regions involved in MM31. Profiling 11 patients from our cohort, we 
find similar DNA aberrations reported in previous MM studies32,33. However, most of the transcriptional 
divergence in our dataset cannot be explained by the DNA mutational status alone, which may suggest 
that some of the transcriptional changes observed in MM are regulated in trans. For example, patient 
MM08 harboring both t(11:14) translocation with NRAS mutated sub-clones, as well as chromosome 
13 deletion, is transcriptionally homogeneous (Fig. 1F, Fig. S7 and Table S1), while patient MM10, 
with substantial intra-tumor heterogeneity, as we show below, has no sub-clonal mutations (Fig. 1F, 
Fig. 2D-E and Table S1). Together, our data shows that tumor heterogeneity observed in MM cannot 
be intuitively explained by the DNA mutational status alone. This suggests a possible role for rare 
intergenic non-coding mutations (that were not captured by the targeted DNA panel), and/or trans 
regulated epigenetic and environmental inputs governing the full extent of transcriptional heterogeneity 
observed in MM. 

 
 
 

Characterizing the intra-tumor heterogeneity of MM patients 
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Since MM patients display large patient-to-patient heterogeneity, we evaluated if intra-tumor 
heterogeneity can also be observed in our cohort9,14. PC originate from post-germinal center and 
memory B-cells and thus have a limited capacity to undergo further mutations in the Ig locus31. In 
agreement with this, myeloma cells typically conserve the Ig sequence through the course of tumor 
evolution34. To gain insight into the clonotypic identity of PC within each patient, we used our scRNA- 
seq data to annotate the variable region of the Ig light chain λ or κ (IGVL/K) and coupled it with the 
constant region of the Ig heavy chain (IGHC) for every single cell (Fig. S8; Methods). PC from control 
donors were composed of diverse Ig sequences (Fig. S8). Across the different controls, the most 
frequently represented IGVL/K sequences correlated to their prevalence in the general population35. 
Conversely, within MM patients we typically observe one specific Ig clonotype. This was further 
validated by a microfluidic platform for single cell B-cell receptor (BCR) sequencing36 (Fig. S8; 
Methods). In order to characterize the intra-tumor transcriptional heterogeneity, we developed a kNN- 
based machine learning classifier that segregates normal from malignant PC (Fig. 2A; Methods). The 
classifier annotates PC based on their similarity to the signatures of normal PC in our data. In the control 
donors, all but a few cells (≤4/1000 cells) are classified as normal PC, while in MM patients, PC are 
mostly classified as abnormal (Fig. 2A). After removal of normal PC, we then clustered the abnormal 
PC from every individual patient separately, and analyzed the inter-cluster versus intra-cluster 
correlations (Fig. 2B; Methods). We detected substantial intra-tumor heterogeneity, defined by negative 
intra-cluster correlation (r<-0.1) and positive inter-cluster correlation (r>0.1), in 10 patients (Fig. 2B; 
Methods). For example, patient SMM02 displays a single BCR clonotype characterized by two distinct 
transcriptional states: One dominated by DEFB1 (p<1x10-50), a gene that was not previously implicated 
in myeloma and reported to be a CCR6 ligand; and the other by the expression of FRZB, implicated in 
the oncogenic Wnt pathway in MM (Fig. 2C and Fig. S9)37. Patient MM11 exhibits two transcriptional 
states both expressing high levels of CCND1 and FRZB; one state is characterized by significant 
(p<1x10-50) overexpression of EDF1 (endothelial differentiation related factor 1), involved in lipid 
metabolis and PPARγ pathway38,39, while the second transcriptional clonotype overexpresses PCBD1, 
a transcriptional co-activator of HNF140. Conversely, the PC of patient SMM01 (positive serum 
immunofixation for IgAκ) display two transcriptional clonotypes, a small clonotype with Ig heavy chain 
class A (IGHA), and a larger one expressing only the κ light chain, each with a distinct transcriptional 
signature (Fig. S9). 

 
In order to evaluate if these clonal structures are the product of genomic aberrations we used the single 
cell genome wide transcriptional data to infer copy number alterations (sciCNA) by averaging the 
relative expression of a large number of genomically adjacent genes. Using similar strategy to Patel and 
Tirosh et al18 we sorted all expressed genes by their genomic locations and used a moving average of 
100 adjacent genes to estimate the chromosomal CNA in each cluster (Fig. 2D, Methods). The 
expression levels were compared to the average signature of the control donor cells. We then compared 
the sciCNA to the targeted genome sequencing for the same patients (Fig. 2D and Fig.S9). Our sciCNA 
analysis shows, as expected, that MGUS patients have less aberrant CNA profile compared to MM 
patients, that show many 13q deletions, in agreement with the frequency of this aberration in myeloma 
(Fig. 2D). Importantly, using sciCNA we find that several intra-patient transcriptional clones also 
harbor genomic aberrations, suggesting that some of the intra-population transcriptional diversity is 
likely driven by different genome structures (Fig. 2E). For example, only one cluster from patient 
SMM02 showed chromosome 22 deletion, while the other showed a normal sciCNA pattern. For MM06 
with 3 transcriptional clones, sciCNA detected 1q amplification together with chromosomes 4 and 14 
deletions in all three transcriptional clones, while only in 2 transcriptional clones a chromosome 5 
deletion was found (Fig. 2D-E). Importantly, in most patients, the differential genes do not necessary 
reside in the altered chromosomes, suggesting of regulation in trans. For example, in patient SMM02, 
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the FRZB, DEFB1, CST3, WARS, are expressed differentially but are not related to chromosome 22 
deletion in cluster 1 (Fig. 2C-E and Fig. S9). Together, these results show that intra-tumor 
transcriptional and CNA heterogeneity are prevalent in myeloma, and they can be characterized using 
scRNA-seq profiling. Further, our data suggest that in MM, transcriptional changes are many times 
regulated in trans, and may be associated indirectly to genomic aberrations. It would be important to 
follow the response to therapy and the risk of disease progression in patients with a single versus 
multiple transcriptional clones. 

 
Characterizing rare cancer cells in asymptomatic patients and in minimal residual disease 

 
Patients with asymptomatic disease are a highly heterogeneous group with varying risk of developing 
MM. Currently, limited methods exist for stratifying these patients’ molecular signature and risk of 
progression. We expected these patients to have a lower tumor burden as compared with active MM. 
We profiled with MARS-seq 7 newly diagnosed patients with MGUS and 6 with SMM (Table S1). 
The disease manifestation of SMM patients, as characterized by MARS-seq, is dramatically different 
from that of MGUS patients in the number of malignant cells, and closely resembles the profiles of the 
MM patients. Within the MGUS patients, we detected malignant clusters for 2 patients, MGUS04 and 
MGUS05, with 69/466 and 482/493 PC displaying a malignant signature, respectively (Fig. 2B and 
Table S3). Clustering the plasma cells of MGUS04 shows that the malignant cells (in cluster 4) are 
characterized by a transcriptional signature overexpressing a known MM driver (CCND1), along with 
DPEP3 (p<1x10-50), a dipeptidase involved in arachidonic acid metabolism, previously associated with 
triple negative breast cancer, but not with MM (Table S2)41. These malignant PC originate from a single 
BCR clonotype. This analysis shows that scRNA-seq can be a highly sensitive approach to molecularly 
characterize even a small number of malignant cells in asymptomatic patients, and can potentially be 
used for improved patient classification and preventive treatment to halt progression into a symptomatic 
disease. 

 
We applied the same sensitive approach to patients with residual disease by performing longitudinal 
scRNA-seq sampling of 5 patients: MM01; MM03; MM07; MM08 and AL01, which were profiled in 
a dynamic fashion at time of diagnosis and post-treatment. These patients were treated with a 
bortezomib-based regimen, and all except for AL01 underwent high dose melphalan therapy with 
autologous stem cell transplantation (Table S1). We were able to detect rare (as little as 2%) cancer 
cells in 5/5 patients with abnormal serum light chain ratios (Fig. 3 A-C). Importantly, 2/5 of these 
patients (MM01 and MM08) were clinically classified as complete responders according to the 
International Myeloma Working Group criteria (Table S1)32. Comparing the cancer cells before and 
after treatment, we find that most of the tumor cells express similar transcriptional programs as 
compared to the original pre-treatment neoplastic cells of the same patient; specifically, we find that 
the major MM drivers in these patients such as CCND1, NSD2/MMSET and FRZB are expressed 
equivalently before and after treatment (Fig. 3C). Although most MM overexpressed genes do not 
change post-treatment, we were able to detect significantly (p<1x10-50) differentially expressed genes 
for a few of the patients, for example the gene ELK2AP (member of ETS oncogene family) is 
overexpressed in MM07 post-treatment compared to the pre-treatment signature; and the gene LCP1 
(lymphocyte cytosolic protein 1), involved in calcium binding, and previously related to several cancers 
but not to MM, is overexpressed in both AL01 and MM03 post-treatment (Fig. S10)42. In two additional 
patients without a baseline sample, we were able to detect as little as 23 tumor PC (1.7% of PC; with a 
defined MM program): For example, patient MM13 with overexpression of MAF, ITGB7 and CCND2, 
and patient MM14 with NSD2/MMSET, PDIA2, AZGP1 and MDK (Fig. S11 and Table S6). This 
demonstrates that scRNA-seq is a powerful tool to dissect PC heterogeneity and identify rare neoplastic 
states in the setting of low tumor burden and minimal residual disease (MRD). The relative stability of 
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MM driver genes expression pre- and post-treatment suggests that targeted therapy approaches in MRD 
settings might be an effective strategy, and warrants further studies. 

 
Circulating tumor cells display similar transcriptional states to the patient BM tumor 

 
In myeloma, and especially in its asymptomatic predecessor states, the circulating tumor cells (CTC) 
load in the peripheral blood is low, complicating a non-invasive and accurate liquid biopsy analysis, 
due to contaminations of various immune cells and normal circulating PC. Previous studies utilizing 
whole exome sequencing found that somatic single nucleotide variants are shared between the blood 
and BM in 84% of patients with active MM43. While the latter study utilized a patient-specific sorting 
strategy in cases with a positive aberrant surface marker, others chose a wider and less-specific 
approach44,45. A prerequisite for non-invasive tumor assessment of asymptomatic states during follow- 
up watchful waiting, or in active disease to monitor response to treatment, is that the CTC reflect the 
BM disease. To test the potential of scRNA-seq applications for accurate CTC characterization, we 
applied MARS-seq on PC from both BM and blood from 19 different patients and 2 control subjects 
(hip09 and hip10; Fig. S3). In order to develop transcriptional and protein markers for efficient 
purification of CTC from the patients’ blood, we initially clustered the circulating plasma cells from all 
21 individuals together. In addition to the 11 patient-specific clusters, we noted a shared cluster (‘cPC4’) 
of polyclonal cells with a plasmablast signature common to most patients, including cells from the 
control donors (Fig. S12). Using flow cytometry in a different cohort of relapsed MM patients, we show 
that CTC with aberrant surface profile have lower protein expression of CD52 compared to non-CTC 
(Fig. S13). In order to compare, for each patient, the CTC with his/her BM tumor cells, we first removed 
the normal circulating PC by excluding cells with cluster ‘cPC4’ characteristics (Methods). We also 
excluded 4 patients with less than 20 CTC from further analysis. Comparing the remaining malignant 
circulating PC to the malignant BM PC for each patient, we observe that in all cases (15/15), the CTC 
signatures highly resemble the BM transcriptional state(s), with a few changes likely resulting from the 
different environments (e.g. expression of CRIP1 and KLF6) (Fig. 4A-C). In order to further validate 
our findings, we compared the BCR clonotype of the patients’ BM PC to CTC. The tumor load in the 
BM and the blood is different by several orders of magnitude, affecting the confidence in our analysis 
of a few patients with small CTC clones (<20 cells; Methods). Overall, in 11/15 patients we find a good 
match in the BCR between BM and blood samples (Fig. S12). Together, we find that circulating PC in 
the patients’ blood are composed of clonotypic CTC, that reflect the transcriptional status of the BM 
disease, and additional normal polyclonal plasmablasts. We further devise an efficient sorting strategy 
for CTC by excluding contaminations of circulating plasmablasts. Our approach can be applied to 
molecularly characterize a patient’s malignant PC in an iterative fashion using liquid biopsies, omitting 
the need for invasive BM sampling. 

 
 
 

Discussion 
 

We report on a new methodology for sensitive characterization of the entire spectrum of clinical 
progression from normal plasma cells to multiple myeloma using single cell RNA-seq. Data on 
thousands of PC from 11 control donors is used to characterize plasma cell heterogeneity within normal 
BM samples, showing polyclonal BCR repertoire and limited inter-individual transcriptional variation. 
Based on this reference, scRNA-seq provides high sensitivity and confidence to identify and 
characterize neoplastic PC in low burden disease settings, such as asymptomatic MGUS and SMM, and 
suggests a direct molecular assay for tracking early MM onset. We find that SMM patients, although 
asymptomatic, are indistinguishable from active MM patients at the molecular level. In fully active and 
symptomatic disease, scRNA-seq leads to precise molecular characterization of the malignant state, and 
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to frequent identification of multi-clonal structure, providing important potential for guiding and 
optimizing personalized treatments, and better understanding of post-treatment resistance. Following 
successful treatment and remission, scRNA-seq enables sensitive and precise detection of rare residual 
neoplastic cells. Importantly, our methodology is compatible with analysis of circulating tumor cells 
and opens the way to routine non-invasive profiling of patients that must be monitored during pre-MM 
stages or post-treatment. 

 
This study also highlights several remaining challenges. Exploring the immune microenvironment 
together with the PC from the same patient may highlight potential new targets for immunotherapy, and 
predict response to specific treatments. MM patients may have a patchy infiltration pattern in the BM, 
and by sampling a single BM site during a routine clinical diagnostic procedure, we may underestimate 
the true heterogeneity within the tumor46. Our cohort is lacking high risk patients with TP53 deletion, 
and the robustness of heterogeneity detection should be tested in that setting as well. We note that we 
have used a 3’ based mRNA sequencing method, and thus are limited to infer coding sequence 
mutations and splice variants, this can potential be accessed using full length scRNA-seq methods47. 
We show that scRNAs-seq data can accurately infer copy number alterations in MM. Even though 
aberrant CNA are common in our cohort, our analysis suggests that trans acting mechanisms dominate 
the tumor PC transcriptional state, as we show for LAMP5. 

 
In the last decade, there has been an immense progress in the treatment of myeloma. Unfortunately, 
despite a surge of new approved drugs and treatment modalities, relapse is still the rule, and detailed 
understanding of the reasons for successful or failed treatments remains limited. This study introduces 
scRNA-seq as a key technology for precise molecular profiling of myeloma patients at various stages 
of the disease, which may open the way to larger scale studies, and facilitate the design of new and 
molecularly informed diagnoses and treatment strategies. 
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Main Figure Legends 
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Figure 1. MM patients display unique transcriptional signatures that converge into defined 
malignant pathways. (A) tSNE (t-distributed stochastic neighborhood embedding) plot depicting 
20,568 single BM PC derived from 29 newly diagnosed patients (‘MGUS01-07’, ‘SMM01-06’, ‘MM1- 
12’, ‘AL01-04’) with plasma cell neoplasms, and 11 control individuals (‘Hip01-11’). Each cluster is 
represented by a specific color and number (related to the heatmap in Fig. S5). (B) Patients are colored 
by a severity gradient projected on the tSNE (grey– control; yellow– MGUS; pink– SMM; red– MM 
and AL, these colors correspond to panel E). (C) Index sorting flow cytometry data represented as mean 
fluorescent intensity (MFI, log10 scale) for specific surface markers, projected onto the tSNE (upper 
panel CD19; lower panel CD56). (D) Bar plot showing distribution of cells from the patients/control 
donors across the clusters (as in Fig.1 A). Patients are color-coded according to disease severity as in 
A, names above bars correspond to the patient with the majority of cells in each cluster. (E) Boxplots 
of single cell gene expression for specific genes across the 29 newly diagnosed patients and 11 control 
donors (left panel). Each box represents 0.25-0.75 percentile of UMI count with line extension to 0.1- 
0.9 percentile; dot represents the mean UMI count. Patients are color-coded according to disease 
severity. For each gene, corresponding histograms of bulk RNA-seq expression estimates from the 
CoMMpass study (TPM in log scale) are shown (right panel). 

 
Figure 2. Intra-tumor heterogeneity in myeloma. (A) Shown are P-values to reject the null 
hypothesis (that a cell belongs to the control PC group) for all 20,586 cells. Dots represent individual 
PC, classified as either ‘normal’ (black) or ‘abnormal’ (red; p<0.01). Patients are ordered according to 
average score value from low to high (Methods). (B) Intra-tumor heterogeneity measure for 21 patients 
with abnormal PC (as classified by the score used in Fig. 2A). This was calculated by plotting the 
correlations within and between clusters (for each patient separately; Methods). (C) Heatmaps showing 
clustering analysis of BM PC for patients MM04 (upper left, 429 cells), MM09 (upper right, 884 cells), 
SMM02 (lower left, 1,645 cells) and MM11 (lower right, 437 cells), clustered with the same number 
of randomly sampled normal BM PC from control individuals. Representative variable genes are 
shown. (D) Heatmap showing copy number alterations inferred from scRNAseq (sciCNA) for each 
patient, averaged by intra-patient clustering. (E) sciCNA profile for SMM02 (top) and MM06 (bottom); 
each line represents a cluster-averaged CNA profile. 

 
Figure 3. Characterization of rare residual malignant cells post-therapy (A) Histograms of normal 
to malignant score (Methods) for 5 MRD patients showing the distribution of scores for control cells 
(from control donors; green, top), the patient’s pre-treatment cells (gray, middle) and post-treatment 
cells (red, bottom). (B) Heatmaps showing normalized single cell gene expression of BM PC pre- and 
post- treatment for patients MM03 (61 and 672 cells respectively), MM01 (913 and 232 cells 
respectively), AL01 (726 and 900 cells respectively), MM08 (453 and 502 cells respectively) and 
MM07 (182 and 1,175 cells respectively). Representative genes are shown. Cells are sorted by 
malignancy score (Methods) shown in the upper panel, grey background represents the malignant cell 
fraction. (C) Boxplots showing gene expression of representative genes pre- and post-treatment for 5 
MRD patients. Each box represents 0.25-0.75 percentile of UMI count with line extension to 0.1-0.9 
percentile; dot represents the mean UMI count. 

 
Figure 4. Circulating PC are composed of CTC that reflect the BM disease (A) Boxplots showing 
gene expression of representative genes from 15 patients for whom NCTC>20. Each patient is represented 
by a different color. Shown are pairs of BM PC and circulating plasma cells (cPC) for each patient. 
Each box represents 0.25-0.75 percentile of UMI count with line extension to 0.1-0.9 percentile; dot 
represents the mean UMI count (B) Correlation matrix for BM PC (x-axis; 7,969 cells) and CTC (y- 
axis; 2,299 cells) across 15 patients. Patients’ color codes correspond to Fig. 4A. (C) Two-dimensional 
tSNE views of paired BM PC (upper panels) and CTC in the blood (lower panels) from the same patient. 
Projection of single cells (black) from a specific patient (SMM02- 1,755 BM PC and 216 CTC; MM07- 
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274 BM PC and 138 CTC; MM06- 976 BM PC and 128 CTC; MM08- 416 BM PC and 164 CTC; 
AL03- 589 BM PC and 267 CTC; MM01- 671 BM PC and 141 CTC) is shown on a gray background 
of all BM PC and CTC (10,268 cells). 

 
Table 1. Clinical characteristics of newly diagnosed patients including risk stratification by disease 
status. 

 
 
 

Supplementary Figure Legends 

Figure S1 

Schematic representation of study design 
 

Figure S2 
 

Representative flow cytometry plots showing sorting strategy (CD38+ CD138+) for PC after doublet 
exclusion (A) BM PC of patient MM08 (B) Circulating plasma cells (cPC) of patient MM04 (C) BM 
PC of patient MGUS05 (D) BM PC of patient MM13 (active myeloma with minimal residual disease). 
Plots were generated using FlowJo software (Methods). During sorting, surface marker expression for 
additional markers in the Euroflow panel (CD19, CD81, CD27, CD56, CD117, CD45) was recorded 
for each single cell (Methods). 

 
Figure S3 

 
BM and peripheral blood single cell QC metrics. (A) Shown are number of reads, number of UMIs and 
% cell analyzed per batch of 384 cells (that were pooled for library construction) for all CD38+ CD138+ 
BM single cells from 29 newly diagnosed patients and 11 control donors. Cells were sorted into plates, 
sequenced, underwent QC evaluation, and filtering-out of non-PC contaminants (Methods). (B) Shown 
are number of reads, number of UMIs and % cell analyzed per batch of 384 cells (that were pooled for 
library construction) for all CD38+ CD138+ peripheral blood single cells from 19 newly diagnosed 
patients and 2 control donors. Cells were sorted into plates, sequenced, underwent QC evaluation, and 
filtering-out of non-PC contaminants (Methods). (C) Table summarizing the total CD38+ CD138+ cell 
numbers from BM and blood of newly diagnosed patients and control donors, that were sorted and 
sequenced, passed QC, and analyzed (after filtering for non-PC contaminants; Methods). 

 
Figure S4 

 
(A) Plot depicting plasma cell in silico filtering according to immunoglobulin load and UMI count per 
cell (Methods) (B) Heatmap showing clustering analysis of 3,179 ‘contaminating’ cells that pass QC 
but do not express Ig gene above the cutoff (100 UMIs per cell). Representative genes (mostly unrelated 
to PC program) are shown. 

 
Figure S5 

 
(A) Heatmap showing clustering analysis of 20,586 BM PC sorted from 29 newly diagnosed patients 
and 11 control donors, featuring normalized single cell expression level of the 100 most variable genes 
(Methods). (B) Dendrogram showing the hierarchical clustering of the average transcription profile for 
all clusters C1-29 (related to Fig. S5). (C) Cell-to-cell correlation matrix of 200 randomly selected cells 
from each patient (with N>200 cells) (left panel); kNN (k=100) adjacency matrix showing, for each 
cell, it’s 100 nearest neighbors (blue). 

 
Figure S6 
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(A) Normalized single cell expression (UMI count, log scale) of 16 representative genes, projected onto 
tSNE map of all 20,586 BM PC from 29 newly diagnosed patients and 11 control donors. (B) 
Distribution of long-lived vs. short lived PC in 40 individuals, donor individuals and MM patients. 
Short-lived PC bars are colored by a gradient that corresponds to Fig. 1B (grey– control; yellow– 
MGUS; pink– SMM; red– MM and AL). 

 
Figure S7 

 
(A) Genomic interphase fluorescent in situ hybridization (iFISH) images of BM PC magnetically 
enriched for CD138+ for patients: AL03 (left); MM08 (middle) and SMM01 (right). Shown are 
fluorescent probes for the immunoglobulin heavy chain (green - IGH) and translocation partners (red- 
FGFR3; CCND1 and CKS1B, from left to right). (B) FACS plots showing intra-cellular staining (gated 
on live cells) for LAMP5 protein (red) compared with isotype control (blue) for KHM1B and RPMI- 
8226 cell lines (upper and lower panel, respectively; Methods). (C) Genome browser view of 
normalized H3K4me2 profiles of peaks found in a 1Mb region in the LAMP5 locus. Data is from two 
independent biological replicates (Methods). 

 
Figure S8 

 
(A) Heatmap depicting the relative frequency of the Ig sequences from analyzing 20,586 BM PC of 29 
newly diagnosed patients and 11 control donors. Upper panel – light chain variable region (IGKV and 
IGLV); middle panel – light chain constant region (IGKC and IGLC); lower panel – Ig heavy chain 
(IGHC) constant region. (B) Chromium 10x single cell BCR clonotype distribution of control donor 
‘hip13’, created by Chromium’s Loupe V(D)J browser (Methods). Left panel: Heatmap showing cell 
frequency for specific IGH/L/K variable (V) region sequences (x-axis) and IGH/K/L joining (J) region 
sequences (y-axis). Right panel: Frequency of different BCR clonotypes (inferred from the heatmap) 
(C) Plots of single cell BCR data for patient MM02 using Chromium 10x single cell BCR platform 
(Methods). Left panel: Single immunoglobulin light chain λ variable region sequence (IGLV) for 
patient MM02. Right Panel: Frequency of different BCR clonotypes for patient MM02, generated by 
Chromium’s Loupe V(D)J browser. 

 
Figure S9 

 
(A) Comparison of CNVKit output from genomic DNA targeted sequencing panel at 500x coverage 
(black dots) and single cell RNA-seq inferred copy number alteration (sciCNA; blue) for patient MM10. 
(B) Scatter plot of CNVKit vs. sciCNA estimation for each DNA segment for patient MM10. (C) Cell 
to cell correlation matrix for patients SMM02 (n=1,664 cells), MM04 (n=439 cells) and MM09 (n=882 
cells). (D) Enriched gene ontology (GO) terms and pathways for up-regulated genes for each of 
patient’s SMM02 clusters (SMM-C1 and SMM-C2) with log2(fold change) > 1.5 and log10P > 10 
compared with normal PC from control donors (Methods). (E) Heatmaps of normalized single cell gene 
expression (UMI count, log scale) for BM PC from patients SMM01 (left, 650 cells) and AL03 (right, 
548 cells), clustered with the same number of normal BM PC from control donors (Methods). 
Representative variable genes are shown. 

 
 
 
 
 

Figure S10 
 

(A) Heatmap showing transcriptome differences between pre- and post- treatment PC from patients and 
normal PC from donors. Clustering was done with the Metacell algorithm (Methods). Differentially 
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expressed genes in MRD PC are highlighted. (B) Scatter plots of single cell expression (average UMI 
count, log scale) for of ELKAP2 (left panel) and LCP1 (right panel) genes in patients pre- and post- 
treatment. 

 
Figure S11 

 
(A) Chromium 10x 5’ single cell expression estimates (Methods) visualized as tSNE plots for patient 
MM13 BM cells enriched with CD138 magnetic beads (Methods). Shown are expression estimates for 
immunoglobulin λ variable region V3-25 gene (IGLV3-25; left), PDIA2 gene (middle); NSD2 gene 
(right). (B) Heatmap of normalized single cell gene expression (UMI, log scale) for BM PC from patient 
MM14 (1,252 cells). Representative variable genes are shown. (C) Scatter plots showing average single 
cell gene expression (log2 scale) of control donors’ BM PC (x-axis) compared with either MM14 cells 
from cluster 1-4 (related to heatmap in panel B; upper scatter plot) or MM14 cells from cluster 7 (lower 
scatter plot). Specific gene names are shown. 

 
Figure S12 

 
(A) Heatmap showing the distribution of circulating plasma cells from 21 patients in 12 clusters ‘cPC1- 
12’). (B) Two dimensional tSNE view of circulating plasma cells from 21 patients. Each dot represents 
a single cell. Patients are color coded. (C) Bar plots of average UMI count for CD52 gene (Methods) 
in common cluster ‘cPC4’ (left, blue bars) compared to CTC (right, red bars). (D) Scatter plots of single 
cell expression estimates (average UMI count, log scale) for patients’ abnormal BM PC (x-axis) to CTC 
in the blood (y-axis). Upper panel – SMM03, (n=198 BM PC and n=16 CTC); lower panel – MGUS05 
(n=188 BM PC and n=211 CTC). (E) Ig light chain variable region distribution within each patient’s 
BM and blood tumor cells. Color represents percentage of cells ranging from white to blue (0-0.5). In 
each box, upper panel represents peripheral blood (PB) and lower panel represents BM. Cell numbers 
are shown on the left. 

 
Figure S13 

 
(A) Flow cytometry plots of circulating plasma cells from 3 myeloma patients with relapse post- 
treatment. Plots were generated using Infinicyt software (Methods). CTC (red) are marked by an 
aberrant surface phenotype, compared to normal PC (green). PCA (principal component analysis) 
quantifies the significance (contribution to principal component 1) of each surface marker to separate 
between ‘CTC’ to ‘normal PC’. Each row represents a different patient. 

 
 
 

Supplementary Tables 

Table S1 

Detailed demographic, clinical, and disease treatment and progression data for all patients. 
 

Table S2 
 

Average UMI per cell for differentially expressed genes, distributed within clusters C1-29. Data is from 
20,568 BM PC related to 29 newly diagnosed patients and 11 control donors. Corresponding p-values 
for Mann-Whitney U a-paramtric test with FDR correction. 

 
Table S3 
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Patients distribution within and across clusters. Shown are cell numbers that relate to specific patients 
(rows), and their corresponding clusters (columns). Data is from 20,568 BM PC analyzed from 29 newly 
diagnosed patients and 11 control donors. 

 
Table S4 

 
Results of genomic DNA targeted sequencing data for myeloma (MyType) for 11 patients, with 
corresponding clinical iFISH data. 

 
Table S5 

 
Enriched gene ontology (GO) terms and pathways per cluster, compared with cluster C1 of normal PC 
from control donors. 

 
Table S6 

 
Comparison of differential expression analysis of MRD patient with small malignant clone (MM13) 
between 10X genomics and MARS-seq. Differential expression was performed relative to normal PC 
sequenced using the same single cell platform. 

 
 
 
 
 

Methods 
 

Harvesting of bone marrow plasma cells during hip replacement surgery 
Individuals with isolated hip osteoarthritis who are otherwise healthy, were recruited by the orthopedic 
department in Tel Aviv Medical Center, Tel Aviv, Israel. Procedure was performed in the operating 
theatre, as described earlier23, with several modifications. Briefly, after informed consent (in accordance 
with Helsinki declaration) and general anesthesia that did not include corticosteroid use, the femoral 
canal was probed with a metal suction device following femoral neck removal. Bone marrow cells were 
suctioned into a sterile tube that contained heparin sodium (Pfizer) diluted with saline to 1000IU. Bony 
fragments were removed by forcing cells through a metal sieve, diluted 1:1 with ice cold FACS buffer 
(EDTA pH8.0 2mM, BSA 0.5% in PBS), placed on ice and immediately transported to the lab. 

 
Obtaining patients’ plasma cells from iliac crest aspirates and peripheral blood 
Patients suspected for plasma cell neoplasm were recruited to the study from hematology departments 
in 7 medical centers in Israel. After informed consent, bone marrow aspiration and peripheral blood 
sampling (20ml) were placed in EDTA-containing tubes (Beckton Dickenson). Tubes were mixed, 
placed on ice, and immediately transported to the lab. 

 
Patient’s clinical and demographic data 
Clinical study data were collected and managed using REDCap electronic data capture tools hosted at 
Weizmann Institute of Science. REDCap (Research Electronic Data Capture) is a secure, web-based 
application designed to support data capture for research studies, providing an intuitive interface for 
validated data entry, audit trails and automated export procedures48. 

 
 
 
 

Single Cell Sorting 
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Bone marrow cells were diluted 2:1 in ice cold FACS buffer (EDTA pH8.0 2mM, BSA 0.5% in PBS), 
washed and strained with a 100µm strainer. Peripheral blood cells were diluted 1:1 in ice cold FACS 
buffer. Mononuclear cell separation was performed by density centrifugation media (Ficol-paque, GE 
Life Sciences) in a 1:1 ratio with diluted blood or marrow cells. Centrifugation (460g, 25min) was 
performed at 10°C, and the mononuclear cells were carefully aspirated and washed with ice cold FACS 
buffer. After red blood cell lysis (Sigma) for 5min at 4°C and washing, peripheral blood cells were 
enriched for CD38 with magnetic beads (Miltenyi), washed and stained with antibodies (all from 
Cytognos or BD Biosciences): CD38, CD138, CD56, CD19, CD117, CD27, CD45, CD81 or CD52. 
Bone marrow cells were stained without prior magnetic bead enrichment. Samples were filtered through 
a 40-μm strainer before commencing sorting. Single cell sorting was performed using either FACS 
SORP-AriaII or AriaFusion (BD Biosciences, San Jose, CA). After doublets exclusion, isolated cells 
were single-cell index-sorted into 384-well cell capture plates containing 2μL of lysis solution and 
barcoded poly(T) reverse-transcription (RT) primers for single-cell RNA-seq. Four empty wells were 
kept in each 384-well plate as a no-cell control for data analysis. Immediately after sorting, each plate 
was spun down to ensure cell immersion into the lysis solution, snap frozen on dry ice, and stored at – 
80°C until processed. 
To record surface marker levels of each single cell, the FACS Diva 8 "index sorting" function was 
activated during single cell sorting. Following the sequencing and analysis of the single cells, each 
surface marker was linked to the genome wide expression profile. 

 
Massively Parallel Single-Cell RNA-seq library preparation (MARS-seq) 
Single-cell libraries were prepared as previously described21,22,49. Briefly, mRNA from cells sorted into 
cell capture plates are barcoded and converted into cDNA and pooled using an automated pipeline. The 
pooled sample is then linearly amplified by T7 in vitro transcription, and the resulting RNA is 
fragmented and converted into a sequencing-ready library by tagging the samples with pool barcodes 
and Illumina sequences during ligation, RT, and PCR. Each pool of cells was tested for library quality 
and concentration was assessed as described earlier21,22,49. Overall, barcoding was done in three levels: 
Cell barcodes allow attribution of each sequence read to its cell of origin, thus enabling pooling; Unique 
Molecular Identifiers (UMIs) allow tagging each original molecule in order to avoid amplification bias; 
and plate barcodes allow elimination of the batch effect. 

 
Analysis of single-cell RNA-seq data 
MARS-seq libraries, pooled at equimolar concentrations, were sequenced using an Illumina NextSeq 
500 sequencer, at a sequencing depth of 50K-100K reads per cell. Reads are condensed into original 
molecules by counting same unique molecular identifiers (UMI). We used statistics on empty-well 
spurious UMI detection to ensure that the batches we used for analysis showed a low level of cross- 
single-cell contamination (less than 3%). 
MARS-seq reads were processed as previously described49. Mapping of reads was done using HISAT 
(version 0.1.6); reads with multiple mapping positions were excluded. Reads were associated with 
genes if they were mapped to an exon, using the UCSC genome browser for reference. Exons of 
different genes that shared genomic position on the same strand were considered a single gene with a 
concatenated gene symbol. Cells with less than 500 UMIs were discarded from the analysis. Genes with 
mean expression smaller than 0.001 UMIs/cell or with above average expression and low coefficient of 
variance (< 1.2) were also discarded. 
Plasma cells were filtered based on immunoglobulin gene expression (sum over all Ig annotated genes) 
using a cutoff of 100 UMIs per cell. This cutoff was selected based on 2-gaussians mixture model (Fig. 
S4). 
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Graph-based clustering analysis 
In order to assign cells to homogeneous clusters we used the PhenoGraph clustering algorithm50. Low- 
level processing of MARS-seq reads results in a matrix U with n rows and m columns, where rows 
represent genes and columns represent cells. Entry Uij contains the number of unique molecular 
identifiers (UMIs) from gene i that were found in cell j. PhenoGraph first builds a k-Nearest Neighbors 
(kNN) graph using the Euclidean distance (k=30) and then refines this graph with the Jaccard similarity 
coefficient, where the edge weight between each two nodes is the number of neighbors they share 
divided by the total number of neighbors they have50. To partition the graph into modules/communities 
PhenoGraph uses the Louvain Method. P-values for differential expression analysis between different 
clusters were calculated using the Mann-Whitney U test with FDR correction (Matlab R2016a ranksum 
function). 
In order to evaluate the robustness of our clustering analysis, we performed clustering with our more 
sensitive in-house analysis package Metacell51. Briefly, informative genes were identified and used to 
compute cell-to-cell similarity to build a kNN graph to group cells into cohesive groups (or meta-cells). 
Then, the algorithm uses bootstrapping to derive strongly separated clusters, as previously described51. 
We also compared the results with clustering using Seurat52. Our PhenoGraph clustering analysis shows 
great agreement with Metacell and Surat. 

 
2D projection 
Cells are visualized in two dimensions using t-Distributed Stochastic Neighbor Embedding (tSNE, 
matlab 2017a tsne function). 

 
Myeloma cell lines 
RPMI-8226 and KHM1B myeloma cell lines were purchased from American Type Culture Collection 
(Manassas, VA) and the Japan Cell Repository Bank (Osaka, Japan), respectively. Cells were cultured 
using an aseptic technique in RPMI medium (Gibco) supplemented with 10% heat-inactivated fetal 
bovine serum, 1mM sodium pyruvate, 2mM L-glutamine, 1% penicillin-streptomycin (ThermoFisher 
Scientific). Cells were stored in 10-50ml flasks (Corning) in an incubator (ThermoFisher Scientific) 
with humidified air and 5%CO2, at 37ºC at a concentration of 0.5-1 million cells per ml. Cell lines were 
validated for lack of mycoplasma infection using primers for mycoplasma-specific 16S rRNA gene 
region (EZ-PCR Mycoplasma Kit, Biological Industries, Beit Ha’emek, Israel). For flow cytometry 
intra-cellular staining, cells were first stained with Live-Dead Violet (Invitrogen), washed and fixed- 
permeabilized with Foxp3/Transcription Factor Staining Buffer Set (eBioscience), followed by staining 
of either control REA(I)-PE or anti-human LAMP5-PE (Miltenyi), and FACS analysis (FlowJo, BD, 
San Jose, CA). 

 
Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) libraries construction 
Chromatin immunoprecipitation and libraries preparation were performed as described earlier, with a 
few modifications53. Briefly, viable cells (negative for Live-Dead Violet, Invitrogen) were sorted into 
FACS buffer, fixed for 10 minutes with 1% formaldehyde (Sigma) at room temperature, followed by 
quenching with 0.125M glycine and washing with ice-cold PBS. Cross-linked cells were resuspended 
in lysis buffer (12 mM TrisCl pH8, 0.1X PBS, 6 mM EDTA) supplemented with protease inhibitor 
(Roche). Chromatin was sheared using NGS Bioruptor Sonicator (Diagenode). The sonicated cell lysate 
(Whole Cell Extract) was incubated with 2.5 μg H3K4me2 antibody (Abcam) at 4°C for 5 hr, and for 
an additional hour with Protein G magnetic beads (Invitrogen). 96 well magnet was used (Invitrogen) 
in all further steps. Cell lysate was removed and samples were washed 5 times with cold RIPA buffer 
(10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 14 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.1% 
DOC; 200ul per wash), twice with RIPA buffer supplemented with 500 mM NaCl (200ul per wash), 
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twice with LiCl buffer (10 mM TE, 250mM LiCl, 0.5% NP-40, 0.5% DOC), once with TE (10Mm Tris- 
HCl pH 8.0, 1mM EDTA), and then eluted in elution buffer (0.5% SDS, 300 mM NaCl, 5 mM EDTA, 
10 mM Tris HCl pH 8.0). The elute was treated sequentially with 2ul of RNaseA (Roche) for 30 min 
and 2.5 ul of Proteinase K (NEB) for two hours, and then reverse crosslinked over night at 65oC.  
DNA was purified by mixing reverse-crosslinked samples with paramagnetic SPRI beads (Agencourt 
AMPure XP, Beckman Coulter), incubated for 4 minutes. Beads were washed on the magnet with 70% 
ethanol and then air dried for 4 minutes. The DNA was eluted in EB buffer (10 mM Tris-HCl pH 8.0). 
For the remainder of the library construction process (DNA end-repair, A-base addition, adaptor 
ligation and enrichment) the same SPRI beads cleanup was used. DNA ends are first repaired by 
T4 polymerase (NEB). Next, T4 polynucleotide kinase (NEB) adds a phosphate group at the 5′ ends. 
An adenosine base is then added to the blunt-ended fragments, using Klenow enzyme (NEB), and a 
barcode Illumina compatible adaptor (IDT) was ligated to each fragment using T4 quick ligase (NEB). 
DNA fragments were amplified by 12 cycles of PCR (Kapa HiFi HotStart PCR ReadyMix, Kapa 
Biosystems) using specific primers (IDT) to the ligated adaptors. The quality of each library was 
analyzed by Tapestation (Agilent). 

 
ChIP-seq data processing and analysis 
All H3K4me2 libraries were sequenced using Illumina’s NextSeq 500. Reads were aligned to the human 
reference genome (hg38) using Bowtie2 aligner version 2.3.4.1 with default parameters. The Picard 
tool ‘MarkDuplicates’ from the Broad Institute (http://broadinstitute.github.io/picard/) was used to 
remove PCR duplicates. To identify regions of enrichment (peaks) from H3K4me2 reads, we used the 
Homer package (http://homer.ucsd.edu/homer/) ‘makeTagDirectory’ followed by the ‘findPeaks’ 
command with the histone parameter using appropriate whole cell extract control. Peaks from all 
samples were merged using ‘mergePeaks’ from Homer package. Reads from all samples counted using 
‘annotatePeaks’ from Homer with the default homer genome data hg38, merged peaks area file and the 
parameter -raw in order not to normalize by the default read count. Normalization of peaks was done 
by dividing reads inside peaks with the average of all reads. For IGV snapshot we used 1 M bp window 
around LAMP5 gene. 

 
Genomic interphase fluorescent in situ hybridization (iFISH) 
BM cells were enriched for CD138 using magnetic beads (Miltenyi), fixated in methanol and glacial 
acetic acid (3:1), placed on slides and hybridized with the following DNA probes: CKS1B/CDKN2C 
(P18) 1q21.3/1p32.3 Amplification/Deletion; IGH Plus 14q32.33 Breakapart; IGH/FGFR3 Plus, Dual 
Fusion 14q32.33/4p16.3 Translocation; IGH/MYEOV Plus, Dual Fusion 14q32.33/11q13.3 
Translocation; P53 (TP53) 17P13.1 Deletion (Cytocell, Cambridge, UK), per manufacturer 
instructions. For analysis, 50 nuclei were counted per slide. Karyotype (G-banding) was performed 
using the non-enriched BM fraction. Images were taken with a Nikon Ti-E inverted fluorescence 
microscope equipped with a ×100 oil-immersion objective and a Photometrics Pixis 1024 CCD camera 
using MetaMorph software (Molecular Devices, Downington, PA). The image-plane pixel dimension 
was 0.13 μm. Images were done on stacks of 15 optical sections with Z spacing of 0.3 μm. 

 
Genomic DNA extraction 
Bulk sorting of 100,000-500,000 PC (CD38+, CD138+; Fig. S2) into PBS was performed using either 
FACS SORP-AriaII or AriaFusion (BD Biosciences, San Jose, CA). After centrifugation (300g 10min), 
supernatant was aspirated, and pellet was snap frozen. DNA extraction was performed using Universal 
Quick-DNA Miniprep Kit (Zymo Research, Irvine, CA), and quantified using a NanoDrop One 
spectrophotometer (ThermoFisher Scientific, Waltham, MA). 

http://broadinstitute.github.io/picard/)
http://homer.ucsd.edu/homer/)
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Preparation of genomic DNA libraries for targeted sequencing 
All 11 tumor samples, and other 16 unmatched BM control samples (magnetically enriched for CD138) 
were subjected to a targeted custom sequencing approach using ‘myType’. ‘MyType’ is a custom 
capture panel designed to capture 120 recurrently mutated genes implicated in myeloma pathogenesis, 
IGH rearrangements as well as arm-level copy number alterations. The target-enrichment design was 
based on DNA pull-down by cRNA baits (SureSelect, Agilent Technologies, Santa Clara, CA). A total 
of 11 patient samples were pooled and target DNA was subsequently enriched using one reaction tube, 
each from the SureSelect kit. All 22 samples were sequenced on a HiSeq2500 with a 100-bp paired-end 
protocol. 

 
Targeted genomic DNA sequencing analysis 
Alignment 
Short insert paired-end reads were aligned to the GRCh37 reference human genome with 1000 genomes 
decoy contigs using BWA-mem. After sequencing we obtained a median of 21.2 million 100 bp paired- 
end reads per sample. After alignment, we obtained a median mean bait coverage of 758.6X per sample 
Somatic Mutation Calling 
Single base substitutions were called using CaVEMan (http://cancerit.github.io/CaVEMan/). The 
algorithm compares sequence data from each tumor sample albeit with an unmatched non-cancerous 
sample and calculates a mutation probability at each genomic locus. To improve specificity, a number 
of post-processing filters were applied as follows: At least a third of the alleles containing the mutant 
must have base quality >=25; If mutant allele coverage >= 10X, there must be a mutant allele of at least 
base quality 20 in the middle 3rd of a read. If mutant allele coverage is <10X, a mutant allele of at least 
base quality 20 in the first 2/3 of a read is acceptable; The mutation position is marked by <3 reads in 
any sample in the unmatched normal panel; The mutant allele proportion must be >5 times than that in 
the unmatched normal sample (or it is zero in the unmatched normal); If the mean base quality is <20 
then less than 96% of mutations carrying reads are in one direction; Mutations within simple repeats, 
centromeric repeats, regions of excessive depth (https://genome.ucsc.edu/) and low mapping quality 
were excluded. Additional unmatched normal filtering was performed using a set of unmatched normal 
samples. Mutations that were detected in >5% of the unmatched normal panel at >=5% mutant allele 
burden were excluded. Variant annotation was done in Ensembl v74 using VAGrENT. 
Small insertions and deletions 
Small somatic insertions and deletions (indels) were identified using a modified version of Pindel 
(https://github.com/cancerit/cgpPindel). To improve specificity, a number of post-processing filters 
were applied that required the following: For regions with sequencing depth <200X, mutant variant 
must be present in at least 8% of total reads; for regions with sequencing depth >=200X, mutant variant 
must be present in at least 4% of total reads; The region with the variant should have <= 9 small (<4 
nucleotides) repeats. The variant is not seen in any reads in the unmatched normal sample or the 
unmatched normal panel; The number of Pindel calls in the tumor sample is greater than 4 and either: 
The number of mutant reads mapped by BWA in the tumor sample is greater than 0 or: The number of 
mutant reads mapped by BWA in the tumor sample is equal to 0 but there are no repeats in the variant 
region and there are reads mapped by Pindel in the tumor sample on both the positive and negative 
strand; Pindel ‘SUM-MS’ score (sum of the mapping scores of the reads used as anchors) >=150. 
Additional unmatched normal filtering was performed using a set of unmatched normal samples 
(n=221). Mutations that were detected in >1% of the unmatched normal panel at >=1% mutant allele 
burden were excluded Variant annotation was done in Ensembl v74 using VAGrENT. For both 

http://cancerit.github.io/CaVEMan/)
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substitutions and indels, variants that may have failed post processing filtering criteria but mapped to 
recurrent oncogenic mutations in COSMCI were retained for manual curation. 
Secondary pipelines for substitution and indel discovery and post call 
To identify sub-clonal variants at very low frequencies in the tumor samples mutation calling using 
secondary pipelines were done. Strelka 2 (v2.8.3) [https://doi.org/10.1101/192872] was used to call 
point mutations and indels using tumor sample and matched normal. All “PASS” calls were examined 
for their presence in Caveman and Pindel outputs. Calls uniquely identified by Strelka2 were retained 
for downstream analysis. We additionally examined the unfiltered calls from Caveman and Pindel that 
failed the criteria defined above and retained for downstream analysis. 
The following filters were applied on calls identified by primary and secondary pipelines: Filter calls 
with >3% MAF in Exac (Version 0.3) or 1000 Genomes; Filter calls with >0.5% MAF in Exac or 1000 
Genomes unless present in COSMIC (v81); Filter calls present in panel of unmatched normal unless 
present in COSMIC; Filter calls within the IGH locus and synonymous variants. 
Cross referencing with known myeloma datasets 
Calls retained after applying the above filters were additionally annotated with variants from MMRF 
CoMMpass Interim Analysis 9 exomes (n=889). Calls were annotated if present at the exact genomic 
position with the exact mutation of if present in close proximity of a mutation (±9 bp). All calls retained 
were manually curated. 
Structural rearrangements 
Given the smaller fragment insert sizes in targeted capture, the 100bp paired-end reads were trimmed 
to 50bp from the 3’ end of the read for better discover of instructural rearrangements. Alignment on the 
trimmed reads was performed as previously described and structural rearrangements were detected by 
an in-house algorithm, BRASS [https://github.com/cancerit/BRASS], which first groups discordant 
read pairs that span the same breakpoint and then using Velvet de novo assembler performs local 
assembly within the vicinity to reconstruct and determine the exact position of the breakpoint to 
nucleotide precision. All calls having supported by less than 5 reads were excluded. Additionally, 
translocations in which either of the break-points is involved with the IGH locus and all deletions, 
inversions and tandem-duplications involving the IGH locus were excluded for downstream analysis. 
Additionally, an orthogonal pipeline using Delly (Version: 0.7.6) was used to identify structural 
rearrangements. Delly was run on each tumor sample using an unmatched control sample and only those 
calls classified as “PASS” by Delly were retained. All calls identified in the unmatched normal were 
also filtered. Additionally, for translocations, only those calls having at least 6 spanning reads and 2 
junction reads or at least 30 spanning reads were retained. 
Deletions, duplication and inversions 
Passing thresholds were 6 spanning reads and 2 junction reads. As previously described for BRASS, 
translocations in which either of the break-points is involved with the IGH locus and all deletions, 
inversions and duplications involving the IGH locus were excluded for downstream analysis. The 
resulting calls retained after the described filters were manually curated. 
Copy number alterations (CNA) 
CNVKit [https://github.com/etal/cnvkit] was used to identify somatic copy number alterations in the 
data. To negate sample specific biases in CNA analysis, all 16 control samples were combined into a 
pooled reference. Each tumor sample is then compared with the pooled reference to identify somatic 
CNA in each sample. CNVKit corrects for biases in regional coverage and GC content, according to 
the given reference before calculating the log-ratios between the built pooled reference and tumor. 
Subsequently, Circular Binary Segmentation (CBS) algorithm is applied to obtain the log2fold change 
values. 
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BCR variable region annotation from scRNA-seq data 
In order to accurately extract BCR sequence annotation we realigned the raw fastq reads using blastall 
(blast.ncbi.nlm.nih.gov, version 2.2.26, with e-value bound of 1e-10) to the IMGT reference 
sequences35 (updated August 2016). For each cell we choose heavy chain constant region, light chain 
constant and variable region based on the highest coverage and longest coverage. 

 
Single cell 5’ transcriptome and BCR-seq (Chromium’s 10x) 
For one patient (MM02) and control (hip13), BM mononuclear cell fraction was split, with half 
proceeding to antibody staining and single cell sorting by MARS-seq, and the other half was enriched 
for CD138 using magnetic beads (Miltenyi), counted using light microscopy and trypan blue stain, and 
then loaded onto 10x Chromium microfluidics system, according to manufacturer’s guidelines. Two 
sets of libraries were prepared from the 10x loaded samples: 5’ mRNA library; and single cell BCR- 
seq library, using custom primers for BCR amplification, according to manufacturer’s instructions. 5’ 
mRNA library was sequenced with Illumina’s Nextseq 500 using 75 paired end reads at a coverage of 
48,105 mean reads per cell. Single cell BCR-seq library was sequenced with Illumina’s Nextseq 500 
using 150 paired end reads, at a coverage of 6,711 reads per cell. Data was analyzed using Chromium’s 
Cell Ranger pipeline with default parameters. For scBCR-seq data, we used Chromium’s V(D)J-Loupe 
for analysis of BCR clonotypes and visualization, with default parameters. 

 
kNN classifier for normal and abnormal plasma cells 
In order to classify cells into normal/abnormal phenotype we used a kNN based classifier. Our method 
is based on the observation that the transcriptome profiles of malignant cells are very different from 
normal PCs, as clearly observed in our dataset. We first calculate the similarity between a given PC and 
all normal PCs using spearman correlation, to prevent potential batch effects, we excluded cells sharing 
the same source (patient) of a given cell. We then select the top K=100 most similar cells. We chose 
K=100 to ensure that the selected cells are from the same sub-population, although we only observed 
two very close sub-populations in our deep analysis on the normal PCs. The distribution of spearman 
correlation to the K=100 most similar cells is normally distributed. After estimating the normal 
distribution parameters, we used the normal cumulative distribution function with Bonferroni correction 
for multiple tests to calculate the p-value of each cell as normal. The lower the p-value is, the cell is 
more likely to be ‘abnormal’ (malignant). 

 
Intra-tumor heterogeneity score 
To detect heterogeneity within each patient, we first determined the number of clusters per patient (k) 
and decide whether the differences between clusters is significant enough to define two or more 
transcriptional clones. We combine supervised and unsupervised analyses to determine the number of 
different tumor clones per patient. We cluster each patient separately after in silico removing normal 
PC (based on the kNN classifier described above), allowing higher sensitivity in detecting changes of 
relatively smaller number of genes. For each patient we calculated heterogeneity score by comparing 
the average cell-to-cell correlation within and between clusters. Correlation is calculated on the 
normalized log UMI count (X) 
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is the UMI counts of gene g in cell i and N is the total number of cells. For patients with 
substantial transcriptional heterogeneity, we would expect a negative inter-cluster correlation and a 
positive within-clusters correlation. Patients with a uniform transcriptional state, would have near zero 
inter-cluster correlation. Finally, after devising this score, we have manually inspected each patient’s 
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clustering results which confirmed our analysis and showed that indeed the patients with the most 
substantial intra-tumor transcriptional heterogeneity show negative inter-cluster correlation. 

 
Gene Ontology (GO) analysis 
To gain insight into gene functions, we performed gene ontology analysis using Metascape 
(http://metascape.org/). We extracted the up-regulated genes for each cluster with log2(Fold change) > 
1.5 and log10P > 10 compared with cluster C1. The up-regulated genes for each cluster were then 
provided as the input for Metascape to obtain enriched GO terms and pathways. 

 
 

Inferring copy number alterations from scRNAseq data 
Copy number alterations were inferred from single cell RNA-seq as previously described18 with 
modifications to Metacells (clusters of cells). Briefly, we calculated the log2(fold change) for each 
cluster relative to the average expression profile of the control donors. Average expression was 
calculated using the log transformed data (log2(1+UMI)) and absolute values of fold change were bound 
by 3. For this analysis we only used genes with more than 100 UMIs for the control donor group. 
Finally, genes were sorted by their genomic location and fold-change was smoothed for each 
chromosome using a moving average over 100 adjacent genes. 

 
Detecting tumor cells in longitudinal MRD samples 

 
To detect rare malignant cells in longitudinal samples we created a normal-malignant score based on 
the similarity of each post-treatment cell to the pre-treatment cells and to an equivalent size group of 
normal PC (sampled from the healthy cohort). For each patient i we define the group Gi to contain N pre-treatment malignant cells and N normal control PCs (total 2N cells). For each cell c from patient i post-treatment we calculate the correlation to all cells in group Gi . Next, we sort the vector of 
correlations and save the order of the malignant and normal cells. For example, if we have 5 malignant 
cells and 5 control cells the order of similarity (their rank order, from first to last) is as follows, writing 
H for a control cell and M for a malignant cell: 

 

M M M M H M H H H H 
 

Next, we assign numeric ranks to all cells and add up the ranks of cells, which come from the malignant 
pool. We calculate the statistic U by 

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁+ 1) 
𝑈𝑈𝑈𝑈=  𝑅𝑅𝑅𝑅− 

2 
where N is the number of malignant cells (pre-treatment), and R is the sum of the ranks of the malignant 
cells. In our example above: 
𝑅𝑅𝑅𝑅= 1 + 2 + 3 + 4 + 6 = 16 and 𝑈𝑈𝑈𝑈=  16 − 5×6 = 
1 

2 U is approximately normally distributed, we standardize the values of U and gives a score between -1 
to 1 where 1 represents all malignant cells proceeds the healthy cells in our rank vector 
(MMMMMHHHHH) and -1 the opposite. 

 
Flow cytometry analysis of CTC from relapsed myeloma patients 
BM and blood from 3 relapsed myeloma patients were analyzed, as previously described54. Aberrant 
PC were identified either by antigen under-expression (CD19, CD27, CD38, CD45, CD52, CD81) or 
antigen over-expression (CD56, CD138). Data acquisition was performed in a FACSCantoII flow 
cytometer (BD, San Jose, CA) using the FACSDiva 6.1 software (BD Biosciences). Data analysis was 
performed using the Infinicyt software (Cytognos SL, Salamanca, Spain). PCA (principal component 

http://metascape.org/
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analysis) quantifies the significance (contribution to principal component 1) of each surface marker to 
separate between ‘CTC’ to ‘normal PC’. Each row represents a different patient. 
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