238 research outputs found

    Field Report on the Excavation of Indian Villages in the Vicinity of the Spiro Mounds, Leflore County, Oklahoma

    Get PDF
    A wealth of strikingly unusual and beautiful objects of Indian manufacture were excavated from the burials of the Spiro Mound, Leflore (sic.) County, Oklahoma during 1936-37. Engraved Gulf Coast conch shells, shell beads of a dozen types, river pearls, effigy pipes, long delicately chipped flint blades, feather and textile cloths and precisely incised pottery vessels were excavated in quantities. So unusual was this material that, at the time, the archaeological science was unable to answer a host of questions which immediately arose concerning the identity of the tribe who had made the artifacts and who were buried with them. How long ago had they occupied the region? From where had they come, and where did they go? The chronological relationship of the Spiro Mound Culture to the known cultures of the United States was of particular concern to the investigators. How and where did this tribe fit into the picture of America\u27s past

    The Eufaula Mound: Contributions to the Spiro Focus

    Get PDF
    The main aim of the paper is the comparison of two archaeological sites, (1) the Eufaula site of McIntosh County, and (2) the Spiro site of Leflore County, Okla. Purpose of the comparison is to indicate the relationship between the 2 sites, thereby establishing a Spiro Focus, the ramifications and general affiliations of which will be suggested. The thesis is based on original research coming out of my experience as Project Superintendent of various units of the Oklahoma WP A Project. The Project, sponsored by the university of Oklahoma and directed by Dr. F.E. Clements, has carried on large scale excavations in Oklahoma since 1936. At that time the Spiro l\found group, in the east central part of the state, was opened up. In the two years from 1936 to 1938 a crew of 70 WP A laborers, under the direction of trained archaeologists, unearthed quantities of archeological material. The main bulk of material from the Great Temple Mound was excavated under the direction of Mr. Joe Finkelstein. 1 It was my privilege to analyze the material excavated by him. I also excavated the Spiro Village and a series of villages in the vicinity of the Mound group. 2 Both groups of data will be utilized

    A Versatile, Portable Intravital Microscopy Platform for Studying Beta-cell Biology In Vivo

    Get PDF
    The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate β-cell function in vivo. Specifically, we developed β-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo β-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study β-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of β-cell physiology in the endogenous islet niche

    High-precision optical-frequency dissemination on branching optical-fiber networks

    Get PDF
    We present a technique for the simultaneous dissemination of high-precision optical-frequency signals to multiple independent remote sites on a branching optical-fiber network. The technique corrects optical-fiber length fluctuations at the output of the link, rather than at the input as is conventional. As the transmitted optical signal remains unaltered until it reaches the remote site, it can be transmitted simultaneously to multiple remote sites on an arbitrarily complex branching network. This technique maintains the same servo-loop bandwidth limit as in conventional techniques and is compatible with active telecommunication links.Sascha W. Schediwy, David Gozzard, Kenneth G. H. Baldwin, Brian J. Orr, R. Bruce Warrington, Guido Aben and Andre N. Luite

    Mitochondrial abnormalities in spinal and bulbar muscular atrophy

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by polyglutamine expansion mutation in the androgen receptor (AR). We investigated whether the mutant protein alters mitochondrial function. We found that constitutive and doxycycline-induced expression of the mutant AR in MN-1 and PC12 cells, respectively, are associated with depolarization of the mitochondrial membrane. This was mitigated by cyclosporine A, which inhibits opening of the mitochondrial permeability transition pore. We also found that the expression of the mutant protein in the presence of ligand results in an elevated level of reactive oxygen species, which is blocked by the treatment with the antioxidants co-enzyme Q10 and idebenone. The mutant protein in MN-1 cells also resulted in increased Bax, caspase 9 and caspase 3. We assessed the effects of mutant AR on the transcription of mitochondrial proteins and found altered expression of the peroxisome proliferator-activated receptor γ coactivator 1 and the mitochondrial specific antioxidant superoxide dismutase-2 in affected tissues of SBMA knock-in mice. In addition, we found that the AR associates with mitochondria in cultured cells. This study thus provides evidence for mitochondrial dysfunction in SBMA cell and animal models, either through indirect effects on the transcription of nuclear-encoded mitochondrial genes or through direct effects of the mutant protein on mitochondria or both. These findings indicate possible benefit from mitochondrial therapy for SBMA

    The Access Technology Program of the Indiana Clinical Translational Sciences Institute (CTSI): A model to facilitate access to cutting-edge technologies across a state

    Get PDF
    Introduction: Access to cutting-edge technologies is essential for investigators to advance translational research. The Indiana Clinical and Translational Sciences Institute (CTSI) spans three major and preeminent universities, four large academic campuses across the state of Indiana, and is mandate to provide best practices to a whole state. Methods: To address the need to facilitate the availability of innovative technologies to its investigators, the Indiana CTSI implemented the Access Technology Program (ATP). The activities of the ATP, or any program of the Indiana CTSI, are challenged to connect technologies and investigators on the multiple Indiana CTSI campuses by the geographical distances between campuses (1–4 hr driving time). Results: Herein, we describe the initiatives developed by the ATP to increase the availability of state-of-the-art technologies to its investigators on all Indiana CTSI campuses, and the methods developed by the ATP to bridge the distance between campuses, technologies, and investigators for the advancement of clinical translational research. Conclusions: The methods and practices described in this publication may inform other approaches to enhance translational research, dissemination, and usage of innovative technologies by translational investigators, especially when distance or multi-campus cultural differences are factors to efficient application

    A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kawasaki disease is an acute vasculitis of infants and young children that is recognized through a constellation of clinical signs that can mimic other benign conditions of childhood. The etiology remains unknown and there is no specific laboratory-based test to identify patients with Kawasaki disease. Treatment to prevent the complication of coronary artery aneurysms is most effective if administered early in the course of the illness. We sought to develop a diagnostic algorithm to help clinicians distinguish Kawasaki disease patients from febrile controls to allow timely initiation of treatment.</p> <p>Methods</p> <p>Urine peptidome profiling and whole blood cell type-specific gene expression analyses were integrated with clinical multivariate analysis to improve differentiation of Kawasaki disease subjects from febrile controls.</p> <p>Results</p> <p>Comparative analyses of multidimensional protein identification using 23 pooled Kawasaki disease and 23 pooled febrile control urine peptide samples revealed 139 candidate markers, of which 13 were confirmed (area under the receiver operating characteristic curve (ROC AUC 0.919)) in an independent cohort of 30 Kawasaki disease and 30 febrile control urine peptidomes. Cell type-specific analysis of microarrays (csSAM) on 26 Kawasaki disease and 13 febrile control whole blood samples revealed a 32-lymphocyte-specific-gene panel (ROC AUC 0.969). The integration of the urine/blood based biomarker panels and a multivariate analysis of 7 clinical parameters (ROC AUC 0.803) effectively stratified 441 Kawasaki disease and 342 febrile control subjects to diagnose Kawasaki disease.</p> <p>Conclusions</p> <p>A hybrid approach using a multi-step diagnostic algorithm integrating both clinical and molecular findings was successful in differentiating children with acute Kawasaki disease from febrile controls.</p
    corecore