1,160 research outputs found
Recommended from our members
Methods for treating bone deficit conditions with benzothiazole
" Compounds containing two aromatic systems covalently linked through a linker containing one or more atoms, or ""linker"" defined as including a covalent bond per se so as to space the aromatic systems at a distance 1.5-15 .ANG., are effective in treating conditions associated with bone deficits. The compounds can be administered to vertebrate subjects alone or in combination with additional agents that promote bone growth or that inhibit bone resorption. They can be screened for activity prior to administration by assessing their ability to effect the transcription of a reporter gene coupled to a promoter associated with a bone morphogenetic protein and/or their ability to stimulate calvarial growth in model animal systems. "Board of Regents, University of Texas Syste
Orientation of the Stripe Formed by the Two-Dimensional Electrons in Higher Landau Levels
Effect of periodic potential on the stripe phase realized in the higher
Landau levels is investigated by the Hartree-Fock approximation. The period of
the potential is chosen to be two to six times of the fundamental period of the
stripe phase. It is found that the stripe aligns perpendicularly to the
external potential in contrast to a naive expectation and hydrodynamic theory.
Charge modulation towards the Wigner crystallization along the stripe is
essential for the present unexpected new result.Comment: 5 pages, RevTex, two figures included in the tex
Development and Testing of a High Stability Engine Control (HISTEC) System
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program
Anisotropic States of Two-Dimensional Electron Systems in High Landau Levels: Effect of an In-Plane Magnetic Field
We report the observation of an acute sensitivity of the anisotropic
longitudinal resistivity of two-dimensional electron systems in half-filled
high Landau levels to the magnitude and orientation of an in-plane magnetic
field. In the third and higher Landau levels, at filling fractions nu=9/2,
11/2, etc., the in-plane field can lead to a striking interchange of the "hard"
and "easy" transport directions. In the second Landau level the normally
isotropic resistivity and the weak nu=5/2 quantized Hall state are destroyed by
a large in-plane field and the transport becomes highly anisotropic.Comment: 5 pages, 4 figures, minor errors correcte
Density Induced Interchange of Anisotropy Axes at Half-Filled High Landau Levels
We observe density induced 90 rotations of the anisotropy axes in
transport measurements at half-filled high Landau levels in the two dimensional
electron system, where stripe states are proposed (=9/2, 11/2, etc). Using
a field effect transistor, we find the transition density to be
cm at =9/2. Hysteresis is observed in the
vicinity of the transition. We construct a phase boundary in the filling
factor-magnetic field plane in the regime . An in-plane magnetic
field applied along either anisotropy axis always stabilizes the low density
orientation of the stripes.Comment: 1 revtex file, 3 eps figure
Effect of an extreme flood event on solute transport and resilience of a mine water treatment system in a mineralised catchment
Extreme rainfall events are predicted to become more frequent with climate change and can have a major bearing on instream solute and pollutant transport in mineralised catchments. The Coledale Beck catchment in north-west England was subject to an extreme rainfall event in December 2015 that equated to a 1 in 200-year event. The catchment contains the UK's first passive metal mine water treatment system, and as such had been subject to intense monitoring of solute dynamics before and after commissioning. Due to this monitoring record, the site provides a unique opportunity to assess the effects of a major storm event on (1) catchment-scale solute transport, and (2) the resilience of the new and novel passive treatment system to extreme events. Monitoring suggests a modest decline in treatment efficiency over time that is not synchronous with the storm event and explained instead by changes in system hydraulic efficiency. There was no apparent flushing of the mine system during the event that could potentially have compromised treatment system performance. Analysis of metal transport in the catchment downstream of the mine suggests relatively subtle changes in instream chemistry with modest but statistically-significant reductions in zinc in the lower catchment irrespective of flow condition after the extreme event, but most parameters of interest show no significant change. Increased export of colloidal iron and aluminium is associated with major landslips in the mid-catchment after the storm and provide fresh sorption sites to attenuate dissolved zinc more rapidly in these locations, corroborated by laboratory experiments utilising site materials to investigate the attenuation/release of metals from stream and terrestrial sediments. The data are important as they show both the resilience of passive mine water treatment systems to extreme events and the importance of catchment-scale monitoring to ensure continued effectiveness of treatment initiatives after major perturbation
Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.
The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals
Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property
One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge
The role of step edge diffusion in epitaxial crystal growth
The role of step edge diffusion (SED) in epitaxial growth is investigated. To
this end we revisit and extend a recently introduced simple cubic
solid-on-solid model, which exhibits the formation and coarsening of pyramid or
mound like structures. By comparing the limiting cases of absent, very fast
(significant), and slow SED we demonstrate how the details of this process
control both the shape of the emerging structures as well as the scaling
behavior. We find a sharp transition from significant SED to intermediate
values of SED, and a continuous one for vanishing SED. We argue that one should
be able to control these features of the surface in experiments by variation of
the flux and substrate temperature.Comment: revised and enlarged version 12 pages, 5 figures, to appear in
Surface Scienc
- …