26 research outputs found

    Molecular and Clinicopathologic Characterization of Intravenous Leiomyomatosis

    Get PDF
    Intravenous leiomyomatosis (IVL) is an unusual uterine smooth muscle proliferation that can be associated with aggressive clinical behavior despite a histologically benign appearance. It has some overlapping molecular characteristics with both uterine leiomyoma and leiomyosarcoma based on limited genetic data. In this study, we assessed the clinical and morphological characteristics of 28 IVL and their correlation with molecular features and protein expression, using array comparative genomic hybridization (aCGH) and Cyclin D1, p16, phosphorylated-Rb, SMARCB1, SOX10, CAIX, SDHB and FH immunohistochemistry. The most common morphologies were cellular (n=15), usual (n=11) and vascular (n=5; including 3 cellular IVL showing both vascular and cellular features). Among the immunohistochemical findings, the most striking was that all IVL showed differential expression of either p16 or Cyclin D1 in comparison to surrounding non-neoplastic tissue. Cytoplasmic phosphorylated-Rb was present in all but one IVL with hyalinization. SMARCB1, FH and SDHB were retained; S0X10 and CAIX were not expressed. The most common genetic alterations involved 1p (39%), 22q (36%), 2q (29%), 1q (25%), 13q (21%) and 14q (21%). Hierarchical clustering analysis of recurrent aberrations revealed 3 molecular groups: Group 1 (29%) and 2 (18%) with associated del(22q) and group 3 (18%) with del(10q). The remaining IVL had non-specific or no alterations by aCGH. Genomic index scores were calculated for all cases and showed no significant difference between the 14 IVL associated with aggressive clinical behavior (extrauterine extension or recurrence) and those without (median scores 5.15 vs 3.5). Among the 5 IVL associated with recurrence, 4 had a vascular morphology and 3 had alterations of 8q. Recurrent chromosome alterations detected herein overlap with those observed in the spectrum of uterine smooth muscle tumors and involve genes implicated in mesenchymal tumors at different sites with distinct morphological features

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology

    Uterine PEComas: correlation between melanocytic marker expression and TSC alterations/TFE3 fusions

    No full text
    Uterine PEComas often present a diagnostic challenge as they share morphological and immunohistochemical features with smooth muscle tumors. Herein we evaluated a series of 19 uterine PEComas to compare the degree of melanocytic marker expression with their molecular profile. Patients ranged from 32-77 (median 48) years, with six tumors classified as malignant based on the modified gynecologic-specific prognostic algorithm. All patients with malignant PEComas were alive with disease or dead  of disease at last follow-up, while all those of uncertain malignant potential were alive and well (median follow-up, 47 months).Seventeen of 19 (89%) PEComas harbored either a TSC1 or TSC2 alteration. One of the two remaining tumors showed a TFE3 rearrangement, but the other lacked alterations in all genes evaluated. All showed at least focal (usually strong) positivity for HMB-45, with 15/19 (79%) having >50% expression, while the tumor lacking TSC or TFE3 alterations was strongly positive in 10% of cells. Melan-A and MiTF were each positive in 15/19 (79%) tumors, but staining extent and intensity were much more variable than HMB-45. Five of six (83%) malignant PEComas also harbored alterations in TP53, ATRX, or RB1, findings not identified in any tumors of uncertain malignant potential. One malignant PEComa was microsatellite-unstable/mismatch repair protein-deficient.In summary, TSC alterations/TFE3 fusions and diffuse (>50%) HMB-45 expression are characteristic of uterine PEComas. In morphologically ambiguous mesenchymal neoplasms with myomelanocytic differentiation, especially those with metastatic or recurrent disease, next-generation sequencing is recommended to evaluate for TSC alterations; as such, patients can be eligible for targeted therapy

    Disseminated peritoneal leiomyomatosis after laparoscopic supracervical hysterectomy with characteristic molecular cytogenetic findings of uterine leiomyoma.

    No full text
    Disseminated peritoneal leiomyomatosis (DPL) is a rare condition characterized by scattered smooth muscle nodules over the peritoneal surfaces. The pathogenesis of DPL remains unclear. Herein we report a case of DPL occurring seven years after laparoscopic supracervical hysterectomy with morcellation for uterine leiomyomata (UL). We analyzed both the original UL and the subsequent DPL by molecular cytogenetics to assess the role of chromosomal abnormalities in DPL pathobiology. Interestingly, all of the chromosomal aberrations detected in this case of DPL, including r(1)(p34.3q41), del(3)(q23q26.33) and t(12;14)(q14.3;q24.1), are characteristic chromosomal abnormalities detected in UL. FISH analysis of the initial UL confirmed an interstitial deletion spanning at least 3q24 and 3q25.1, suggesting that functional alteration of a potential gene in this chromosomal region may play a role in DPL development from UL. With the increasing rate of hysterectomy through laparoscopic approach to UL, the unique complications of laparoscopy with morcellation, especially seeding and proliferation of tumor cells over abdominal organs and peritoneum, are becoming more significant and may necessitate review of current surgical protocols to prevent future seeding of the pelvic region with tumor particles

    Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature.

    Get PDF
    With recent rapid advances in genomic technologies, precise delineation of structural chromosome rearrangements at the nucleotide level is becoming increasingly feasible. In this era of “next-generation cytogenetics” (i.e., an integration of traditional cytogenetic techniques and next-generation sequencing), a consensus nomenclature is essential for accurate communication and data sharing. Currently, nomenclature for describing the sequencing data of these aberrations is lacking. Herein, we present a system called Next-Gen Cytogenetic Nomenclature, which is concordant with the International System for Human Cytogenetic Nomenclature (2013). This system starts with the alignment of rearrangement sequences by BLAT or BLAST (alignment tools) and arrives at a concise and detailed description of chromosomal changes. To facilitate usage and implementation of this nomenclature, we are developing a program designated BLA(S)T Output Sequence Tool of Nomenclature (BOSToN), a demonstrative version of which is accessible online. A standardized characterization of structural chromosomal rearrangements is essential both for research analyses and for application in the clinical setting
    corecore