57 research outputs found

    CLOCK 3111 T/C SNP Interacts with Emotional Eating Behavior for Weight-Loss in a Mediterranean Population

    Get PDF
    Objective: The goals of this research was (1) to analyze the role of emotional eating behavior on weight-loss progression during a 30-week weight-loss program in 1,272 individuals from a large Mediterranean population and (2) to test for interaction between CLOCK 3111 T/C SNP and emotional eating behavior on the effectiveness of the weight-loss program. Design and Methods: A total of 1,272 overweight and obese participants (BMI: 31±5 kg/m2), aged 20 to 65 years, attending outpatient weight-loss clinics were recruited for this analysis. Emotional eating behavior was assessed by the Emotional Eating Questionnaire (EEQ), a questionnaire validated for overweight and obese Spanish subjects. Anthropometric measures, dietary intake and weight-loss progression were assessed and analyzed throughout the 30-week program. Multivariate analysis and linear regression models were performed to test for gene-environment interaction. Results: Weight-loss progression during the 30-week program differed significantly according to the degree of emotional eating behavior. Participants classified as 'very emotional eaters' experienced more irregular (P = 0.007) weight-loss, with a lower rate of weight decline (−0.002 vs. −0.003, P = 11), lost significantly less weight than those C carriers with a low emotional score (<11) (P = 0.005). Conclusions: Emotional eating behavior associates with weight-loss pattern, progression and total weight-loss. Additionally, CLOCK 3111 T/C SNP interacts with emotional eating behavior to modulate total weight loss. These results suggest that the assessment of this locus and emotional eating behavior could improve the development of effective, long-tern weight-management interventions

    CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake

    Get PDF
    The circadian clock system instructs 24-h rhythmicity on gene expression in essentially all cells, including adipocytes, and epigenetic mechanisms may participate in this regulation. The aim of this research was to investigate the influence of obesity and metabolic syndrome (MetS) features in clock gene methylation and the involvement of these epigenetic modifications in the outcomes. Sixty normal-weight, overweight and obese women followed a 16-weeks weight reduction program. DNA methylation levels at different CpG sites of CLOCK, BMAL1 and PER2 genes were analyzed by Sequenom's MassARRAY in white blood cells obtained before the treatment. Statistical differences between normal-weight and overweight + obese subjects were found in the methylation status of different CpG sites of CLOCK (CpGs 1, 5-6, 8 and 11-14) and, with lower statistical significance, in BMAL1 (CpGs 6-7, 8, 15 and 16-17). The methylation pattern of different CpG sites of the three genes showed significant associations with anthropometric parameters such as body mass index and adiposity, and with a MetS score. Moreover, the baseline methylation levels of CLOCK CpG 1 and PER2 CpGs 2-3 and 25 correlated with the magnitude of weight loss. Interestingly, the percentage of methylation of CLOCK CpGs 1 and 8 showed associations with the intake of monounsaturated and polyunsaturated fatty acids. This study demonstrates for the first time an association between methylation status of CpG sites located in clock genes (CLOCK, BMAL1 and PER2) with obesity, MetS and weight loss. Moreover, the methylation status of different CpG sites in CLOCK and PER2 could be used as biomarkers of weight-loss success, particularly CLOCK CPGs 5-6

    Hypertriglyceridemia Influences the Degree of Postprandial Lipemic Response in Patients with Metabolic Syndrome and Coronary Artery Disease: From the Cordioprev Study

    Get PDF
    Objective To determine whether metabolic syndrome traits influence the postprandial lipemia response of coronary patients, and whether this influence depends on the number of MetS criteria. Materials and Methods 1002 coronary artery disease patients from the CORDIOPREV study were submitted to an oral fat load test meal with 0.7 g fat/kg body weight (12% saturated fatty acids, 10% polyunsaturated fatty acids, 43% monounsaturated fatty acids), 10% protein and 25% carbohydrates. Serial blood test analyzing lipid fractions were drawn at 0, 1, 2, 3 and 4 hours during the postprandial state. Total and incremental area under the curves of the different postprandial parameters were calculated following the trapezoid rule to assess the magnitude of change during the postprandial state Results Postprandial lipemia response was directly related to the presence of metabolic syndrome. We found a positive association between the number of metabolic syndrome criteria and the response of postprandial plasma triglycerides (p<0.001), area under the curve of triglycerides (p<0.001) and incremental area under the curve of triglycerides (p<0.001). However, the influence of them on postprandial triglycerides remained statistically significant only in those patients without basal hypertriglyceridemia. Interestingly, in stepwise multiple linear regression analysis with the AUC of triglycerides as the dependent variable, only fasting triglycerides, fasting glucose and waist circumference appeared as significant independent (P<0.05) contributors. The multiple lineal regression (R) was 0.77, and fasting triglycerides showed the greatest effect on AUC of triglycerides with a standardized coefficient of 0.75. Conclusions Fasting triglycerides are the major contributors to the postprandial triglycerides levels. MetS influences the postprandial response of lipids in patients with coronary heart disease, particularly in non-hypertriglyceridemic patients

    Clinical characteristics and evaluation of LDL-cholesterol treatment of the Spanish Familial Hypercholesterolemia Longitudinal Cohort Study (SAFEHEART)

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>Familial hypercholesterolemia (FH) patients are at high risk for premature coronary heart disease (CHD). Despite the use of statins, most patients do not achieve an optimal LDL-cholesterol goal. The aims of this study are to describe baseline characteristics and to evaluate Lipid Lowering Therapy (LLT) in FH patients recruited in SAFEHEART.</p> <p>Methods and Results</p> <p>A cross-sectional analysis of cases recruited in the Spanish FH cohort at inclusion was performed. Demographic, lifestyle, medical and therapeutic data were collected by specific surveys. Blood samples for lipid profile and DNA were obtained. Genetic test for FH was performed through DNA-microarray. Data from 1852 subjects (47.5% males) over 19 years old were analyzed: 1262 (68.1%, mean age 45.6 years) had genetic diagnosis of FH and 590 (31.9%, mean age 41.3 years) were non-FH. Cardiovascular disease was present in 14% of FH and in 3.2% of non-FH subjects (P < 0.001), and was significantly higher in patients carrying a null mutation compared with those carrying a defective mutation (14.87% vs. 10.6%, respectively, P < 0.05). Prevalence of current smokers was 28.4% in FH subjects. Most FH cases were receiving LLT (84%). Although 51.5% were receiving treatment expected to reduce LDL-c levels at least 50%, only 13.6% were on maximum statin dose combined with ezetimibe. Mean LDL-c level in treated FH cases was 186.5 mg/dl (SD: 65.6) and only 3.4% of patients reached and LDL-c under 100 mg/dl. The best predictor for LDL-c goal attainment was the use of combined therapy with statin and ezetimibe.</p> <p>Conclusion</p> <p>Although most of this high risk population is receiving LLT, prevalence of cardiovascular disease and LDL-c levels are still high and far from the optimum LDL-c therapeutic goal. However, LDL-c levels could be reduced by using more intensive LLT such as combined therapy with maximum statin dose and ezetimibe.</p

    Clinical characteristics and evaluation of LDL-cholesterol treatment of the Spanish Familial Hypercholesterolemia Longitudinal Cohort Study (SAFEHEART)

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>Familial hypercholesterolemia (FH) patients are at high risk for premature coronary heart disease (CHD). Despite the use of statins, most patients do not achieve an optimal LDL-cholesterol goal. The aims of this study are to describe baseline characteristics and to evaluate Lipid Lowering Therapy (LLT) in FH patients recruited in SAFEHEART.</p> <p>Methods and Results</p> <p>A cross-sectional analysis of cases recruited in the Spanish FH cohort at inclusion was performed. Demographic, lifestyle, medical and therapeutic data were collected by specific surveys. Blood samples for lipid profile and DNA were obtained. Genetic test for FH was performed through DNA-microarray. Data from 1852 subjects (47.5% males) over 19 years old were analyzed: 1262 (68.1%, mean age 45.6 years) had genetic diagnosis of FH and 590 (31.9%, mean age 41.3 years) were non-FH. Cardiovascular disease was present in 14% of FH and in 3.2% of non-FH subjects (P < 0.001), and was significantly higher in patients carrying a null mutation compared with those carrying a defective mutation (14.87% vs. 10.6%, respectively, P < 0.05). Prevalence of current smokers was 28.4% in FH subjects. Most FH cases were receiving LLT (84%). Although 51.5% were receiving treatment expected to reduce LDL-c levels at least 50%, only 13.6% were on maximum statin dose combined with ezetimibe. Mean LDL-c level in treated FH cases was 186.5 mg/dl (SD: 65.6) and only 3.4% of patients reached and LDL-c under 100 mg/dl. The best predictor for LDL-c goal attainment was the use of combined therapy with statin and ezetimibe.</p> <p>Conclusion</p> <p>Although most of this high risk population is receiving LLT, prevalence of cardiovascular disease and LDL-c levels are still high and far from the optimum LDL-c therapeutic goal. However, LDL-c levels could be reduced by using more intensive LLT such as combined therapy with maximum statin dose and ezetimibe.</p

    Beta cell functionality and hepatic insulin resistance are major contributors to type 2 diabetes remission and starting pharmacological therapy: from CORDIOPREV randomized controlled trial

    Get PDF
    In order to assess whether previous hepatic IR (Hepatic-IR fasting) and beta-cell functionality could modulate type 2 diabetes remission and the need for starting glucose- lowering treatment, newly-diagnosed type 2 diabetes participants who had never received glucose-lowering treatment (190 out of 1002) from the CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (a prospective, randomized and controlled clinical trial), were randomized to consume a Mediterranean or a low-fat diet. Type 2 diabetes remission was defined according to the American Diabetes Association recommendation for levels of HbA1c, fasting plasma glucose and 2h plasma glucose after oral glucose tolerance test, and having maintained them for at least 2 consecutive years. Patients were classified according to the median of Hepatic-IR fasting and beta-cell functionality, measured as the disposition index (DI) at baseline. Cox proportional hazards regression determined the potential for Hepatic-IR fasting and DI indexes as predictors of diabetes remission and the probability of starting pharmacological treatment after a 5-year follow-up. Low-Hepatic-IR fasting or high-DI patients had a higher probability of diabetes remission than high-Hepatic-IR fasting or low-DI subjects (HR:1.79; 95% CI 1.06_3.05; and HR:2.66; 95% CI 1.60_4.43, respectively) after a dietary intervention with no pharmacological treatment and no weight loss. The combination of low- Hepatic-IR fasting and high-DI presented the highest probability of remission (HR:4.63; 95% CI 2.00_10.70). Among patients maintaining diabetes, those with high- Hepatic-IR fasting and low-DI showed the highest risk of starting glucose-lowerin

    An altered microbiota pattern precedes Type 2 diabetes mellitus development: From the CORDIOPREV study

    Get PDF
    Introduction. A distinctive gut microbiome have been linked to type 2 diabetes mellitus (T2DM). We aimed to evaluate whether gut microbiota composition, in addition to clinical biomarkers, could improve the prediction of new incident cases of diabetes in patients with coronary heart disease. Methods All the patients from the CORDIOPREV (Clinical Trials.gov.Identifier: NCT00924937) study without T2DM at baseline were included (n = 462). Overall, 107 patients developed it after a median of 60 months. The gut microbiota composition was determined by 16S rRNA gene sequencing and predictive models were created using hold-out method. Results. A gut microbiota profile associated with T2DM development was determined through a microbiome-based predictive model. The addition of microbiome data to clinical parameters (variables included in FINDRISC risk score and the diabetes risk score of the American Diabetes Association, HDL, triglycerides and HbA1c) improved the prediction increasing the area under the curve from 0.632 to 0.946. Furthermore, a microbiome-based risk score including the ten most discriminant genera, was associated with the probability of develop T2DM. Conclusión. These results suggest that a microbiota profile is associated to the T2DM development. An integrate predictive model of microbiome and clinical data that can improve the prediction of T2DM is also proposed, if is validated in independent populations to prevent this disease

    Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including <it>LPL</it>, <it>APOA5 </it>and <it>APOE</it>. The combined analysis of these polymorphisms could produce clinically meaningful complementary information.</p> <p>Methods</p> <p>A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the <it>LPL</it>-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the <it>APOA5</it>-S19W (rs3135506) and -1131T/C (rs662799) variants, and the <it>APOE </it>polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption.</p> <p>Results</p> <p>We found a significant lowering effect of the <it>LPL</it>-HindIII and S447X polymorphisms (<it>p </it>< 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the <it>APOE</it>-ε4 allele were significantly associated with an independent additive TG-raising effect (<it>p </it>< 0.05, <it>p </it>< 0.01, <it>p </it>< 0.001, <it>p </it>< 0.0001 and <it>p </it>< 0.001, respectively). Grouping individuals according to the presence of TG-lowering or TG-raising polymorphisms showed significant differences in TG levels (<it>p </it>< 0.0001), with the lowest levels exhibited by carriers of two lowering variants (10.2% reduction in TG geometric mean with respect to individuals who were homozygous for the frequent alleles of all the variants), and the highest levels in carriers of raising combinations (25.1% mean TG increase). Thus, carrying two lowering variants was protective against HTG (OR = 0.62; 95% CI, 0.39-0.98; <it>p </it>= 0.042) and having one single raising polymorphism (OR = 1.20; 95% CI, 1.39-2.87; <it>p </it>< 0.001) or more (2 or 3 raising variants; OR = 2.90; 95% CI, 1.56-5.41; <it>p </it>< 0.001) were associated with HTG.</p> <p>Conclusion</p> <p>Our results showed a significant independent additive effect on TG levels of the <it>LPL </it>polymorphisms HindIII, S447X, D9N and N291S; the S19W and -1131T/C variants of <it>APOA5</it>, and the ε4 allele of <it>APOE </it>in our study population. Moreover, some of the variant combinations studied were significantly associated with the absence or the presence of hypertriglyceridemia.</p

    Apolipoprotein C3 Polymorphisms, Cognitive Function and Diabetes in Caribbean Origin Hispanics

    Get PDF
    Apolipoprotein C3 (APOC3) modulates triglyceride metabolism through inhibition of lipoprotein lipase, but is itself regulated by insulin, so that APOC3 represents a potential mechanism by which glucose metabolism may affect lipid metabolism. Unfavorable lipoprotein profiles and impaired glucose metabolism are linked to cognitive decline, and all three conditions may decrease lifespan. Associations between apolipoprotein C3 (APOC3) gene polymorphisms and impaired lipid and glucose metabolism are well-established, but potential connections between APOC3 polymorphisms, cognitive decline and diabetes deserve further attention.We examined whether APOC3 single nucleotide polymorphisms (SNPs) m482 (rs2854117) and 3u386 (rs5128) were related to cognitive measures, whether the associations between cognitive differences and genotype were related to metabolic differences, and how diabetes status affected these associations. Study subjects were Hispanics of Caribbean origin (n = 991, aged 45-74) living in the Boston metropolitan area.Cognitive and metabolic measures differed substantially by type II diabetes status. In multivariate regression models, APOC3 m482 AA subjects with diabetes exhibited lower executive function (P = 0.009), Stroop color naming score (P = 0.014) and Stroop color-word score (P = 0.022) compared to AG/GG subjects. APOC3 m482 AA subjects with diabetes exhibited significantly higher glucose (P = 0.032) and total cholesterol (P = 0.028) compared to AG/GG subjects. APOC3 3u386 GC/GG subjects with diabetes exhibited significantly higher triglyceride (P = 0.004), total cholesterol (P = 0.003) and glucose (P = 0.016) compared to CC subjects.In summary, we identified significant associations between APOC3 polymorphisms, impaired cognition and metabolic dysregulation in Caribbean Hispanics with diabetes. Further research investigating these relationships in other populations is warranted

    Forty-Three Loci Associated with Plasma Lipoprotein Size, Concentration, and Cholesterol Content in Genome-Wide Analysis

    Get PDF
    While conventional LDL-C, HDL-C, and triglyceride measurements reflect aggregate properties of plasma lipoprotein fractions, NMR-based measurements more accurately reflect lipoprotein particle concentrations according to class (LDL, HDL, and VLDL) and particle size (small, medium, and large). The concentrations of these lipoprotein sub-fractions may be related to risk of cardiovascular disease and related metabolic disorders. We performed a genome-wide association study of 17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, triglycerides, ApoA1, and ApoB in 17,296 women from the Women's Genome Health Study (WGHS). Among 36 loci with genome-wide significance (P<5×10−8) in primary and secondary analysis, ten (PCCB/STAG1 (3q22.3), GMPR/MYLIP (6p22.3), BTNL2 (6p21.32), KLF14 (7q32.2), 8p23.1, JMJD1C (10q21.3), SBF2 (11p15.4), 12q23.2, CCDC92/DNAH10/ZNF664 (12q24.31.B), and WIPI1 (17q24.2)) have not been reported in prior genome-wide association studies for plasma lipid concentration. Associations with mean lipoprotein particle size but not cholesterol content were found for LDL at four loci (7q11.23, LPL (8p21.3), 12q24.31.B, and LIPG (18q21.1)) and for HDL at one locus (GCKR (2p23.3)). In addition, genetic determinants of total IDL and total VLDL concentration were found at many loci, most strongly at LIPC (15q22.1) and APOC-APOE complex (19q13.32), respectively. Associations at seven more loci previously known for effects on conventional plasma lipid measures reveal additional genetic influences on lipoprotein profiles and bring the total number of loci to 43. Thus, genome-wide associations identified novel loci involved with lipoprotein metabolism—including loci that affect the NMR-based measures of concentration or size of LDL, HDL, and VLDL particles—all characteristics of lipoprotein profiles that may impact disease risk but are not available by conventional assay
    corecore