8 research outputs found

    An enhanced method for sequence walking and paralog mining: TOPO® Vector-Ligation PCR

    No full text
    Background Although technological advances allow for the economical acquisition of whole genome sequences, many organisms\u27 genomes remain unsequenced, and fully sequenced genomes may contain gaps. Researchers reliant upon partial genomic or heterologous sequence information require methods for obtaining unknown sequences from loci of interest. Various PCR based techniques are available for sequence walking - i.e., the acquisition of unknown DNA sequence adjacent to known sequence. Many such methods require rigid, elaborate protocols and/or impose narrowly confined options in the choice of restriction enzymes for necessary genomic digests. We describe a new method, TOPO® Vector-Ligation PCR (or TVL-PCR) that innovatively integrates available tools and familiar concepts to offer advantages as a means of both targeted sequence walking and paralog mining. Findings TVL-PCR exploits the ligation efficiency of the pCR®4-TOPO® (Invitrogen, Carlsbad, California) vector system to capture fragments of unknown sequence by creating chimeric molecules containing defined priming sites at both ends. Initially, restriction enzyme-digested genomic DNA is end-repaired to create 3\u27 adenosine overhangs and is then ligated to pCR4-TOPO vectors. The ligation product pool is used directly as a template for nested PCR, using specific primers to target orthologous sequences, or degenerate primers to enable capture of paralogous gene family members. We demonstrated the efficacy of this method by capturing entire coding and partial promoter sequences of several strawberry Superman-like genes. Conclusions TVL-PCR is a convenient and efficient method for DNA sequence walking and paralog mining that is applicable to any organism for which relevant DNA sequence is available as a basis for primer design

    An enhanced method for sequence walking and paralog mining: TOPO<sup>® </sup>Vector-Ligation PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although technological advances allow for the economical acquisition of whole genome sequences, many organisms' genomes remain unsequenced, and fully sequenced genomes may contain gaps. Researchers reliant upon partial genomic or heterologous sequence information require methods for obtaining unknown sequences from loci of interest. Various PCR based techniques are available for sequence walking - i.e., the acquisition of unknown DNA sequence adjacent to known sequence. Many such methods require rigid, elaborate protocols and/or impose narrowly confined options in the choice of restriction enzymes for necessary genomic digests. We describe a new method, TOPO<sup>® </sup>Vector-Ligation PCR (or TVL-PCR) that innovatively integrates available tools and familiar concepts to offer advantages as a means of both targeted sequence walking and paralog mining.</p> <p>Findings</p> <p>TVL-PCR exploits the ligation efficiency of the pCR<sup>®</sup>4-TOPO<sup>® </sup>(Invitrogen, Carlsbad, California) vector system to capture fragments of unknown sequence by creating chimeric molecules containing defined priming sites at both ends. Initially, restriction enzyme-digested genomic DNA is end-repaired to create 3' adenosine overhangs and is then ligated to pCR4-TOPO vectors. The ligation product pool is used directly as a template for nested PCR, using specific primers to target orthologous sequences, or degenerate primers to enable capture of paralogous gene family members. We demonstrated the efficacy of this method by capturing entire coding and partial promoter sequences of several strawberry Superman-like genes.</p> <p>Conclusions</p> <p>TVL-PCR is a convenient and efficient method for DNA sequence walking and paralog mining that is applicable to any organism for which relevant DNA sequence is available as a basis for primer design.</p

    Large-Scale Standardized Phenotyping of apple in RosBREED

    No full text
    The USDA - Specialty Crop Research Initiative-funded RosBREED project is focused on enabling marker-assisted breeding in the Rosaceae. New molecular tools for selection need to be developed before this technology will be widely accepted and applied to apple breeding programs. As well as detailed genotypic data of inter-related progenies, parents and ancestor cultivars, fully descriptive phenotypic data also need to be collected. For apple, fruit phenotyping begins at harvest, followed by 10 and 20 weeks regular storage, each followed by 7 days shelf life at room temperature. The standardized phenotyping protocols agreed by breeding teams in Washington, Minnesota and New York states will be presented in this paper

    Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa

    Get PDF
    Background A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca ‘Hawaii 4’ reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. Results About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing “haploSNPs” (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative “codon-based” SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix’s “SNPolisher” R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family ‘Holiday’ × ‘Korona’ with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. Conclusions The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array’s high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop
    corecore