34 research outputs found

    Emissions from a modern log wood masonry heater and wood pellet boiler : Composition and biological impact on air-liquid interface exposed human lung cancer cells

    Get PDF
    The consumption of wood fuel is markedly increasing in developing and industrialized countries. Known side effects of wood smoke inhalation manifest in proinflammatory signaling, oxidative stress, DNA damage and hence increased cancer risk. In this study, the composition and acute biological impact of emissions of state-of-the-art wood combustion compliances: masonry heater (MH) and pellet boiler (PB) were investigated. Therefore A549 cells were exposed to emission aerosols in an automated air-liquid interface exposure station followed by cytotoxicity, transcriptome and proteome analyses. In parallel, aerosols were subjected to a chemical and physical haracterization. Compared to PB, the MH combustion at the same dilution ratio resulted in a 3-fold higher particle mass concentration (PM2.5) and deposited dose (PB: 27 ±\pm 2 ng/cm2, MH; 73 ±\pm 12 ng/cm2). Additionally, the MH aerosol displayed a substantially larger concentration of aldehydes, polycyclic aromatic hydrocarbons (PAH) or oxidized PAH. Gene ontology analysis of transcriptome of A549 cells exposed to MH emissions revealed the activation of proinflammatory response and key signaling cascades MAP kinase and JAK-STAT. Furthermore, CYP1A1, an essential enzyme in PAH metabolism, was induced. PB combustion aerosol activated the proinflammatory marker IL6 and different transport processes. The proteomics data uncovered induction of DNA damage-associated proteins in response to PB and DNA doublestrand break processing proteins in response to MH emissions. Taking together, the MH produces emissions with a higher particle dose and more toxic compounds while causing only mild biological responses. This finding points to a significant mitigating effect of antioxidative compounds in MH wood smoke

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Impact of Volatile and Semi-volatile Organic Compounds from Farming Environments on Allergy-Related Cellular Processes

    No full text
    <jats:title>Abstract</jats:title><jats:p>Allergic diseases are an increasing global burden. Epidemiological and in vivo studies showed that farming environments could protect from allergic asthma. Studies explaining this protective effect mainly focused on the influence of chemical compounds in the molecular size range of proteins and endotoxins. Our study aimed at deciphering the possible role of small-sized semi-volatile organic compounds (SVOCs) of farming aerosols in immunomodulation processes. Bronchial epithelial BEAS-2B cells were exposed to aerosol extracts of particulate matter (PM<jats:sub>2.5</jats:sub>) from farming environments. These cell exposures revealed a decisive effect of the smaller sized fraction (< 3 kDa) compared to extracts including the larger sized fraction. We demonstrated that smaller compounds can induce regulations of inflammatory and allergy-related genes including interleukin-8, xanthine dehydrogenase and toll-like receptor 2 (<jats:italic>TLR2</jats:italic>). Additionally, we performed a comprehensive chemical investigation of two typical farming aerosols (cow vs. sheep) by applying comprehensive gas chromatography coupled to time-of-flight mass spectrometry. We were able to identify several SVOCs characteristic for the protective cow sheds environment including four key components. Cell exposure with the two farming extracts showed a distinct regulation of the E3 ubiquitin ligase <jats:italic>PELI2</jats:italic> gene and <jats:italic>TLR2</jats:italic> by cow shed extracts. Finally, the regulation of <jats:italic>TLR2</jats:italic> corresponded to the regulation that was observed after exposing cells to an artificial mixture of the four key components identified in the cow sheds. In summary, we were able to demonstrate the importance of smaller particle-bound SVOCs found in farming environments concerning their possible contribution to a protective farm effect.</jats:p&gt

    Systems toxicology of complex wood combustion aerosol reveals gaseous carbonyl compounds as critical constituents

    No full text
    Epidemiological studies identified air pollution as one of the prime causes for human morbidity and mortality, due to harmful effects mainly on the cardiovascular and respiratory systems. Damage to the lung leads to several severe diseases such as fibrosis, chronic obstructive pulmonary disease and cancer. Noxious environmental aerosols are comprised of a gas and particulate phase representing highly complex chemical mixtures composed of myriads of compounds. Although some critical pollutants, foremost particulate matter (PM), could be linked to adverse health effects, a comprehensive understanding of relevant biological mechanisms and detrimental aerosol constituents is still lacking. Here, we employed a systems toxicology approach focusing on wood combustion, an important source for air pollution, and demonstrate a key role of the gas phase, specifically carbonyls, in driving adverse effects. Transcriptional profiling and biochemical analysis of human lung cells exposed at the air–liquid-interface determined DNA damage and stress response, as well as perturbation of cellular metabolism, as major key events. Connectivity mapping revealed a high similarity of gene expression signatures induced by wood smoke and agents prompting DNA-protein crosslinks (DPCs). Indeed, various gaseous aldehydes were detected in wood smoke, which promote DPCs, initiate similar genomic responses and are responsible for DNA damage provoked by wood smoke. Hence, systems toxicology enables the discovery of critical constituents of complex mixtures i.e. aerosols and highlights the role of carbonyls on top of particulate matter as an important health hazard
    corecore