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Abstract

The consumption of wood fuel is markedly increasing in developing and industrialized countries. Known side effects of wood
smoke inhalation manifest in proinflammatory signaling, oxidative stress, DNA damage and hence increased cancer risk. In
this study, the composition and acute biological impact of emissions of state-of-the-art wood combustion compliances: masonry
heater (MH) and pellet boiler (PB) were investigated. Therefore A549 cells were exposed to emission aerosols in an automated
air-liquid interface exposure station followed by cytotoxicity, transcriptome and proteome analyses. In parallel, aerosols were
subjected to a chemical and physical characterization. Compared to PB, the MH combustion at the same dilution ratio resulted
in a 3-fold higher particle mass concentration (PM2.5) and deposited dose (PB: 27 + 2 ng/cm?, MH; 73 + 12 ng/cm?). Addi-
tionally, the MH aerosol displayed a substantially larger concentration of aldehydes, polycyclic aromatic hydrocarbons (PAH) or
oxidized PAH. Gene ontology analysis of transcriptome of A549 cells exposed to MH emissions revealed the activation of pro-
inflammatory response and key signaling cascades MAP kinase and JAK-STAT. Furthermore, CYP1A1, an essential enzyme
in PAH metabolism, was induced. PB combustion aerosol activated the proinflammatory marker IL6 and different transport
processes. The proteomics data uncovered induction of DNA damage-associated proteins in response to PB and DNA double-
strand break processing proteins in response to MH emissions. Taking together, the MH produces emissions with a higher
particle dose and more toxic compounds while causing only mild biological responses. This finding points to a significant miti-
gating effect of antioxidative compounds in MH wood smoke.
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Introduction

Air pollution is a complex mixture of gas- and particulate-phase com-
ponents comprised of inorganic and organic species. Over the past
decades, several epidemiological studies showed that ambient air pol-
lution, and especially inhalable particulate matter (PM), induce severe
health effects including increased rates of morbidity and mortality
in the exposed populations [1-6]. Source apportionment studies re-
veal that globally, about 20% of urban ambient PM; s air pollution is
caused by domestic fuel burning. This ranges from 12% in the USA,
22% in Northwestern and 32% in Central and Eastern Europe to about
34% in Africa [7]. Increasing evidence has accumulated that smoke
from burning biomass is a serious risk factor for developing chronic
obstructive pulmonary disease (COPD), a widespread airway illness
and a major cause of death worldwide [8, 9]. At the cellular level,
several in vitro studies have shown the proinflammatory effects of
biomass smoke exposure. Contact to wood and coal combustion from
PM induced an increased production of chemokines, like monocyte
chemoattractant protein (MCP)-1 and IL-8 in the NSCLC A549 cell
line [10, 11], while other combustion particles induced differential pro-
inflammatory responses [10, 12—15]. Mechanistically, wood smoke in-
duces the production of reactive oxygen species (ROS) impacting on
the oxidative/reductive state of the cell. This affects the production of
superoxide and increases the generation of free radicals [16], which
induces DNA damage [10].

The current study was prompted by the increased use of wood
as a renewable fuel in industrialized countries, with the emergence of
wood pellets as an alternative to wood logs. However, the use of wood
as a source of energy is highly country-specific. Countries with low
energy wood production or fewer forest areas (e.g. the United King-
dom) nowadays import wood pellets. In 2014, the worldwide pellet
production was around 27 million tons [17]. Besides easy storage and
transport, pellets are currently found to be an efficient and relatively
clean fuel for residential heating. Several studies found significantly
lower emissions of PM and hazardous organic substances for small-
scale pellet combustion compared to log wood combustion [15, 18—
21].

Toxicological studies on combustion particles exposure were mostly
performed using cell systems, animals and in rarer cases human vol-
unteers [22]. For cell culture based-research, the submersed method is
commonly used for exposure experiments, where particles suspended
in culture medium are applied to cells. This method is not suitable
for the study of airborne particles and can result in low sensitivity
for evaluating biological effects [23]. A new direction for studying
direct exposures to emission aerosols has emerged with the appear-
ance of air-liquid-interface (ALI) systems [24-26]. The ALI tech-
nology enables reproducible and direct on-site exposure of lung cell
cultures to aerosols under realistic dilution, flow and humidity con-
ditions [27] and can readily be combined with multi-omics analysis
techniques [28, 29].

In this study, the composition and biological effects of combus-
tion aerosol emissions from a log wood operated masonry heater (MH)
and a modern pellet boiler (PB) are compared and discussed in the
context of previously obtained results on particulate emissions from
a ship diesel engine. The analysis of the biological multi-omics data
combined with the physicochemical aerosol analysis provides a com-
prehensive overview of affected biological mechanisms and pathways,
which enable to further identify potentially harmful components of the
wood combustion aerosols.

Materials and methods

Combustion experiments

The combustion experiments were carried out at the ILMARI research
facility of the University of Eastern Finland in Kuopio (www.uef.fi/
ilmari). Combustion of beech logs was carried out in a modern soap-
stone MH equipped with combustion air staging system (model HIISI,
Tulikivi Ltd, Finland). This type of MH represents the current state-of-
the-art of heat retaining MHs utilized in northern Europe. Wood logs
are combusted in a relatively short period of time and at high power,
leading to high combustion rates and firebox temperatures. The stag-
ing of the combustion air considerably decreases carbon monoxide
and organic emissions in MHs when compared to conventional MHs
without air staging [30]. Combustion experiments were designed for
4 h cell exposure and started in a cold (room temperature) stove. Each
experiment included combustion of six batches of wood logs, taking
35 minutes each and a residual char burning phase of 30 minutes cor-
responding to fuel power of approximately 15 kW. The detailed infor-
mation is given in the supplement (Text S1).

The PB combustion experiments were carried out using a modern
automatic 25 kW PB (model PZ-RL, Biotech Energietechnik GmbH,
Austria; see Figure S1). The softwood pellets contained pine and
spruce wood. The boiler was operated with factory settings and nomi-
nal load of 25 kW, which leads to particle emissions mainly consisting
of alkali metal salts [31]. In all combustion experiments, the boiler
was pre-heated by operating it for one hour before starting the 4 h
measurements. The PB was operated under constant load conditions
(typical for single-house boilers equipped with large water reservoirs)
and had a very constant and stable combustion behavior. The detailed
information about the sampling methods is summarized in the supple-
ment (Text S1).

Cell culture conditions and stable isotope labeling (SILAC)
A549, human non-small cell lung cancer cells, were purchased from
the American Type Culture Collection (ATCC CCL-185; http://www.
lgcstandards-atcc.org/Products/All/CCL-185.aspx), and cultured for
6 passages in RPMI-1640 media supplemented with 10 % dialyzed
FBS (Sigma-Aldrich), 100 U/ml penicillin, 100 pg/ml streptomycin
(Sigma-Aldrich), and either 48.67 pg/ml Hy-lysine (lysineO, Sigma-
Aldrich) or 4, 4, 5, 5-Dg4-lysine (lysine4, Sigma-Aldrich) to achieve a
complete labeling of the cells [32] for SILAC analysis. In order to de-
tect unlabeled contaminants in each sample, a reverse experiment was
created by swapping the lysineO for the lysine4 label. 24 h before the
experiment ca. 500.000 cells were seeded into 24mm diameter porous
membrane inserts (Corning), respectively, with 0.4 um pore size on
top of the cell culture medium.

Cell exposure at air-liquid interface

The cell exposure experiments were performed in the mobile biolog-
ical laboratory of the HICE consortium (HICE-mobilab, www.hice-
vi.de), which was brought to the experimental site in Finland. Cell
exposures were performed in an automated air-liquid interface expo-
sure station (HICE ALI system by KIT, Germany and Vitrocell Sys-
tems GmbH, Germany). It is a complete system providing all process
technology required for cell exposure experiments at dynamic aerosol
sources under conditions imitating those of the human lung. Important
parameters for cell viability and exposure such as temperature, humid-
ity, and airflow were electronically monitored and controlled [Miilhopt
et al. 2016]. The combustion aerosol was conducted through a PM; 5
impactor to simulate deposition in the upper respiratory tract.
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To provide reproducible experimental conditions for the exposure,
the ALI system was used based on a previous study [33]. The aerosol
was humidified by steam injection to 85% relative humidity and the
temperature was set at 37°C. The flow rate was set to 100 ml/min.
Cells on membrane inserts were placed into media compartments that
were previously incubated with RPMI-1640 growth medium supple-
mented with 10 mM HEPES pH 7.3 (Life Technologies), 100 U/ml
penicillin, 100 pg/ml streptomycin (Sigma-Aldrich), and either
48.67 ug/ml Hy-lysine (lysine0, Sigma-Aldrich) or 4, 4, 5, 5-D4-lysine
(lysine4, Sigma-Aldrich). Cells were exposed for 4 h with a 1:40 with
compressed AADCO cleaned ambient air diluted wood combustion
aerosols (Figure 1). The experiments were performed in triplicates as
3 independent exposures.
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Figure 1. Schematic representation of the experimental setup. Emission
aerosols from an automatic PB or from a MH were diluted 1:40 with com-
pressed AADCO cleaned ambient air. The combustion aerosols were physi-
cally and chemically characterized using on-line and off-line methods. A549
cells were directly exposed for 4 h at the ALI with the diluted and humid-
ified combustion emissions with clean air as a reference and subjected to
toxicological, proteomic and transcriptomic analyses.

Proteomic analysis

Protein extraction was performed directly after exposure as previously
described in Sapcariu et al., [34]. 100 pg of the protein extracts (50 pug
of the lysine0 and 50 pg lysine4 labeled proteins were digested using
an automated sample-preparation workflow (Axel-Semrau Proteome
Digest-O-r), which allowed the reproducible preparation of large num-
bers of samples [35]. The samples were reduced with 1 mM tris(2-
carboxyethyl)phosphine (TCEP, Merck) and free sulfhydryl groups
carbamidomethylated using 5.5 mM choloroacetamide (Sigma-Aldrich).
Proteins were digested with 0.5 pg sequencing grade endopeptidase
LysC (Wako) overnight at room temperature. The reaction was termi-
nated by adding trifluoroacetic acid (TFA, Merck) to a final concen-
tration of 1% resulting in a final pH of 2. The peptides were puri-
fied using C18 stage-tips (3M) [36]. The samples were measured on
a Q-Exactive mass spectrometer (Thermo-Fisher, Germany) coupled

to a nano-LC system (easy-nLC, Thermo-Fisher, Germany) in data-
dependent acquisition mode, selecting the top 10 peaks for HCD frag-
mentation (Text S1). For the automatic interpretation of the recorded
spectral data, the MaxQuant software package version 1.5.2.8 was em-
ployed, using a multiplicity of 2 for SILAC (unlabeled and lysine4) [37].
Carbamidomethylation was set as a fixed modification while oxidized
methionine and acetylated N-termini were set as variable modifica-
tions. An FDR of 1% was applied to peptide and protein level and
an Andromeda-based search was performed using a human Uniprot
database (uniprot. HUMAN.2014-08.fasta, downloaded August 08th
2014). The ratios heavy/light and medium/light of the protein groups
were normalized against their median using the MaxQuant. The nor-
malized ratios of the protein Groups output file were used to determine
proteins undergoing regulation.

Transcriptome analysis

Directly after aerosol exposure, cells were lysed in RLT buffer of
RNeasy mini Kit (Qiagen, Germany). Total RNA was cleaned up on
RNeasy mini columns (Qiagen). RNA was spiked (One-Color RNA
Spike-in Kit, Agilent, Germany), reversely transcribed into cDNA with
T7 primers and labeled with Cy3-coupled CTP in a T7 RNA poly-
merase transcription reaction (Low Input Quick Amp Labeling Kit,
one-color, Agilent). Labeled cRNA was purified on RNeasy mini spin
columns (Qiagen, Germany), fragmented and hybridized on microar-
ray slides (Sure Print G3 Human Gene Expression Microarray 8 x 60
K, Agilent). After 17 h at 65°C in a hybridization oven, microarray
slides were washed (Gene Expression Wash Buffer Kit, Agilent) and
scanned (Agilent C microarray scanner, Agilent). Data were extracted
using Feature Extraction software (Agilent).

Bioinformatics

Data obtained from the proteomics and transcriptomics analyses were
log-transformed for the aerosol and clean air replicates using the R-
statistical software package (version 3.3.3) [38]. Means for the six
replicates (three forward and three reverse) were calculated and used
for the determination of regulated proteins and means for the three
biological replicates were calculated and used for the determination of
regulated transcripts.

Principal component analysis was used to reduce the dimension-
ality of the data and to facilitate data exploration. As the third first
principal components revealed a strong batch effect, ComBat [39] was
applied to correct for that. The rank-product [40] was used to estimate
the statistical significance of log; ratio difference between the aerosol
treated and the control group. Pfp is the adjusted p-value provided
by rank-product. Genes with a pfp < 0.1 and 2.5% of the most up
and downregulated and proteins with pfp < 0.1 and 25% of the most
up and downregulated were selected for the further analysis (Table
S1). Regulated proteins and transcripts were used for the Gene On-
tology analysis using the DAVID online tool [41]. The raw data were
stored in Gene Expression Omnibus (GSE93557) and Proteomics DB
(PRDB004262), respectively.

Chemical and physical characterization of the exposure
aerosol

The bulk gases of the emissions were measured continuously includ-
ing carbon dioxide (CO;), carbon monoxide (CO), oxygen (O;) and
nitrogen oxide (NOx) concentrations. Photoionization (PI) Time-of-
Flight (TOF) mass spectrometry was applied to obtain a more detailed
on-line analysis of the volatile organic emissions (Text S1). Further-
more, volatile carbonyl compounds (CCs) from the gas phase were
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Figure 2. Chemical and physical characterization of the wood combustion aerosols. (A) The general characterization of the combustion processes indicated
by means of the temperature and CO, concentration of the flow gas, (B) particle number and mass distributions, (C-E) chemical aerosol analyses represented in
relative concentrations (right, log scale) and absolute concentrations in bar plots (left, log scale), (F) particle deposition dose onto the cell surface in the ALI
unit, (G) transmission electron microscope (TEM) images of MH and (H) PB combustion particles.

Applied methods: 1 = EC/OC-analysis (thermal-optical method), 2 = Aethalometer, 3 = Filter gravimetry, 4 = Element analysis (ICP-AES), 5 = Thermal
desorption/direct derivatization gas chromatography/Mass spectrometry and comprehensive two-dimensional gas chromatography/Time-of-flight mass
spectrometry, 6 = On-line photo ionization mass spectrometry (REMPI-MS), 7 = GC-SIM-MS, 8 = On-line photo ionization mass spectrometry (SPI-MS), *

= p-value < 0.05, ** = p-value < 0.005.

analyzed, since they are known to be one of the major volatile organic
compound (VOC) class released by cellulose combustion [42] and
harmful to human health [43] (Text S1). The sampling of these com-
pounds was carried out on cartridges with 2, 4-dinitrophenylhydrazine
(DNPH) derivatization and subsequently analyzed by gas chromatog-
raphy coupled with mass spectrometry (GC-MS).

Particle size distribution and concentration were measured by a
Scanning Mobility Particle Sizer (SMPS 3080, TSI, USA). The SMPS
was set to the maximum particle size range of 15 nm to 638 nm. Fur-
thermore, particle concentrations were continuously monitored with
a Condensation Particle Counter (CPC 3022, TSI, USA) [44]. Size
distribution inside the ALI setup was calculated from measured num-
ber distribution data by applying the corresponding dilution factors.
The mass deposited on the cell layer was estimated from PM, 5 filter
sample data assuming an overall deposition of 1.5% of the PM; 5 ex-
posure concentration [45—47]. PM, 5 concentration was determined
by weighing PTFE membrane filters, which were conditioned at room
temperature for one hour before and after sampling.

Black Carbon (BC) which is defined as the light absorbing frac-

tion, was measured with a 7-wavelength (370 —-950nm) Aethalome-
ter (AE33, MAGEE Scientific, Slovenia), as described in Arnott et
al. [48]. Since BC absorbed wavelength independently, the BC con-
centration was defined at 880nm. Shorter wavelength (370—450 nm)
are also absorbed by organic species like substituted aromatic com-
pounds or PAH, which represent the so-called Brown carbon (BrC)
fraction. Analyses of the organic and elemental carbon (OC and EC)
content were carried out by a (TOCA, Desert Research Institute Model
2001A, USA) applying the Improve A protocol which defines four dif-
ferent fractions of (OCy to OCyy) and three fractions of elemental car-
bon (ECj to ECyyr) according to a temperature program. For the de-
tection of several particulate organic compounds, an in situ derivatiza-
tion thermal desorption coupled to gas-chromatography followed by a
time-of-flight mass spectrometry (Leco, USA) was applied. A detailed
description can be found in supplemental Text S1 and in Orasche et
al. [19]. The water-soluble organic fraction was analyzed via ESI high-
resolution mass spectrometry (FT-ICR MS) and elemental analysis of
the particulate samples was performed by ICP atomic emission spec-
trometry (ICP-AES, system, Spectro Ciros Vision*“system from SPEC-
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TRO Analytical Instruments GmbH & Co. KG, Kleve, Germany).

Statistical analysis

For the statistical analysis of the physical and chemical characteriza-
tion of the MH and PB aerosols, the means of the replicates of three
exposure experiments were calculated and shown in the plots of the ab-
solute or relative quantification. For the determination of the statistical
significance of any changes detected in the comparison between MH
and PB the two samples, a two-sided t-test was applied to calculate
the p-values. For the data visualization on a linear scale, the standard
deviations are shown, and on a logarithmic scale, the p-values were
included.

Results and Discussion

The general characterization of the investigated combustion processes
after 4 h exposure time was depicted by means of the temperature and
CO; concentration of the flowing gas (Figure 2A). The MH showed
a very transient and cyclic combustion behavior due to the repetitive
log wood batch fillings. Each batch was characterized by an ignition
phase, flaming combustion and char burning phase [49, 50]. Expect-
edly, in batch combustion experiments the variations are always higher
than in automated combustion appliances, despite the extensive effort
for high reproducibility. In contrast, the PB, which was operated under
constant load conditions, had a very constant and stable combustion
behavior (Figure 2A).

Chemical and physical analyses and cell exposure dose

In the nanoparticle size region, the particle size distribution of the PB
emissions reached the maximum at a lower range (~ 80 nm) in com-
parison to the log wood combustion emissions (~ 200 nm). The dif-
ference in peak concentration between PB and MH was more clearly
visible in the derived mass size distribution (~ 105 nm and ~ 270 nm
for PB and MH emissions, respectively). The particle size distribution
changed very dynamically, thus the depicted information is brought as
an example (Figure 2B).

For determination of the deposited dose, the PM; 5 concentration
values from filter gravimetry were used. Assuming a size-independent,
constant deposition probability of 1.5% in the applicable size range [47,
51], the accumulated particle mass deposited on the lung cell mono-
layer surface area was found to be 27 + 2 ng/cm? for PB and 73
+ 12 ng/cm? for MH combustion per 4 h exposure duration. Thus,
particle deposition dose is ~ 3-fold higher for the MH combustion
experiments (Figure 2F). The relatively high deposited dose for MH
combustion particles was caused by larger agglomerates, which were
confirmed by transmission electron microscopy (TEM; Figure 2G).

TEM for MH particles revealed a typical fractal soot aggregate
structure with a diameter of 50 nm carbon-rich primary particles (Fig-
ure 2B and G). The PB combustion particles showed a vast predom-
inance of small nanoparticles with the absence of larger aggregates.
The particles were predominantly asymmetrically shaped and below a
diameter of 200 nm (Figure 2B and H).

Figures 2C-E summarize the chemical composition of the MH and
PB aerosol in a bar graph (selected parameters). Figure 2C and black
carbon from 2E depict the PM; 5 concentration and the carbon frac-
tions according to thermal-optical carbon analysis (elemental carbon
(EC) and organic carbon (OC)) as well as the optically determined
black carbon (BC) value. This shows that MH combustion particles
contained high amounts of refractory EC and non-refractory OC. The
PB emissions showed much lower concentrations for all carbonaceous

fractions. The emissions of both wood combustion compliances re-
vealed high contributions of inorganic ash species, particularly potas-
sium and zinc. Note that potassium is a well-known tracer/biomarker
for wood combustion [52, 53] and zinc is a toxic constituent of wood
smoke particles [14, 54].

In the supplementary Figure S5A the results of the elemental anal-
ysis of the PM are summarized. Most of the ash species (sulfur, sodium,
potassium, and zinc) were higher concentrated in PB combustion par-
ticles compared to MH PM. However, some trace elements such as
lead, copper and calcium also showed higher concentrations of MH-
than in PB-combustion PM.

Higher molecular weight polycyclic aromatic hydrocarbons (PAH,
4-ring and larger) and oxygenated PAH have been analyzed as they are
toxicologically well-established organic PM compounds. The sum val-
ues of these compounds are depicted in Figure 2E, showing that they
were by an order of magnitude more abundant in the MH combustion
particles compared to PB. This has been found for almost all PAH and
PAH-derivatives with the exception of coronene (Figure S5B).

The carboxylic compounds, another important class of air toxi-
cants, were also found to be an order of magnitude more enriched
in MH combustion aerosols compared to the PB combustion aerosols
(see Figure S6A). Other organic gas phase compounds, such as smaller
polycyclic aromatic compounds (2- and 3-ring PAH) and benzene deriva-
tives were more concentrated in MH combustion aerosols compared to
the PB combustion aerosols as well (Figure S6B).

Of particular interest regarding biological effects are semi-volatile
phenolic compounds (Figure 3A) or polyphenolic compounds [56].
The concentration of phenolic species in the PM from PB emissions
was between 1 and 3 orders of magnitude lower when compared with
log wood emissions. The quality of combustion in terms of complete-
ness, which is influenced by the combustion technology and tempera-
ture as well as the size and type of fuel, is inversely correlated with the
number and length of substituents on aromatic rings [57]. The PB ex-
hibited a more effective combustion and therefore generated emission
with lower organic content and phenolic compounds. In general, the
phenolic compounds in wood combustion originate from pyrolysis of
the wood’s structural polyphenolic polymer lignin. Similarly, the for-
mation of larger polyphenolic species (oxidized aromatic structures)
stems from the lignin-degradation with less breakdown of the lignin
structure [58—60].

To gain a more profound insight, the oxidized aromatic struc-
tures in the MH and PB combustion particulate matter were also an-
alyzed by electrospray ionization fourier transform ion cyclotron res-
onance mass spectrometry (ESI- FTICR MS) at the molecular level.
For the MH sample, negative polarity ESI spectra contained 760 dif-
ferent oxygen-containing aromatic signals (i.e. molecular formulas)
on average. In contrast, the PB samples showed a much lower number
of signals (118) with lower total intensity (integrated signal strength
for oxygen-containing aromatic signals for PB PM was ~ 1/16 of the
one for MH PM). Highly aromatic and highly oxidized species were
found in the water-soluble organic carbon fraction of the MH com-
bustion particulate matter, whereas being nearly absent for the PB
combustion (for ESI with negative and positive ion polarity). A high
amount of species with a double bond equivalent larger than 4 and up
to more than 12 with an average number of 2-5 oxygens was revealed.
Intensity-weighted average values pointed to a higher aromaticity for
the species detected in the MH combustion PM sample compared to
the PB (double bond equivalents of 8.68 + 10% versus 7.40 &+ 10%).
The species found in the PB combustion experiments, albeit being of
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Research Foundation (DFG) [55]. (C) The genes CYP1A1l and CYPIBI1
were activated after exposure of A549 cells to the MH combustion aerosol,
consistent with high TEQ values. (D) Black Carbon (BC, ~ soot) and brown
carbon (BrC, ~ light absorbing organics) were very abundant in the MH com-
bustion particles. (E) Representation of the thermo-optical carbon analysis
(TOCA). (F) Venn plot depicted from ultra-high mass resolution analyses
(FTICR) of the water-soluble PM components shows that the total amount of
detectable organic compounds is by a factor of about 7 higher for beech log
wood than for pellet particles. (G) The signal intensity of oxygen-containing
compounds (CHO class) is more than an order of magnitude higher for the
log wood group.

L = limit of quantification, * = p-value < 0.05, ** = p-value < 0.005.

considerably lower intensity, covered a comparable chemical space to
the MH combustion experiment. This suggests that chemical charac-
teristics of the organic fraction in both cases are qualitatively compa-
rable although much lower concentrations of oxygen-containing com-
pound such as polyphenols were found in PB combustion PM due to
the more complete combustion.

The Aethalometer measurements (Figure 3D) revealed, that un-
like PB combustion, the MH combustion formed PM containing vi-
olet/blue light (near UV) absorbing organic species (so-called brown
carbon fraction, BrC). This is typical for formation of larger polyphe-
nolic compounds from the lignin polymer [61-65] and is in line with
the chemical ESI-FTICR MS analysis of the water-soluble oxidized
PM species.

The thermal/optical carbon analysis TOCA (Figure 3E) revealed
that the contribution of the OC- as well as the EC-fractions, were neg-
ligible in the PB combustion PM. The MH combustion particles were
dominated by the EC1- and OC pyro-fractions, indicating that heav-
ier organic compounds were more important in this case. This could
be attributed to the good combustion efficiency of the modern MH as
simple log wood stoves can exhibit much higher OC1-OC3 contribu-
tion [66]. For MH log wood particles about 55% elemental carbon
and 25% pyrolytically formed carbon were found, which was likely
formed from charring of the wood polymers cellulose, hemicellulose
and lignin in the measurement process. Very small amounts of carbon
with dominating elemental carbon were consistently found with the
optical analysis of the PB.

In summary, this study confirmed, that the more complete com-
bustion in PB revealed considerably less air pollutant parameters. The
PM- and most organic air toxicant-concentrations were markedly re-
duced compared to MH combustion [67]. In detail, the MH com-
bustion aerosol showed a ~ 3-fold higher particle mass concentration
(PM2.5) and deposited dose, accompanied by a substantially larger ex-
posure concentration of organic compounds such as aldehydes, PAH
or oxidized PAH in comparison to PB combustion (Figure 2E, F). Only
inorganic compounds such as potassium and the cytotoxic zinc were
more abundant in PB emissions, indicating higher burning bed temper-
atures in the PB (Figure 2D).

Biological effects of MH and PB emission aerosols in ALI
exposed A549 cells

We now wished to compare the results from the chemical and physical
characterization of wood combustion aerosols to biological effects on
cultured human cells. To this end, human NSCLC A549 cells were
exposed to the MH and PB emissions using an ALI-exposure system.
Cellular membrane integrity assays via LDH release to the exogenous
medium after each exposure proved the lack of cytotoxicity in all 4
h exposure experiments (Fig S7B). The molecular response of these
human lung cells was investigated in detail using transcriptomics and
proteomics analyses.

The integral biological impact in A549 cells, measured by the
overall changes in proteome and transcriptome was relatively mild af-
ter MH and PB combustion aerosol exposure (Figure 4). According
to the literature the PB combustion was less toxic than MH via a vis
several endpoints [15].

The gene ontology based analysis of the A549 cells on the tran-
scriptomic level in response to MH log combustion aerosols revealed
induction of signaling pathway like JAK-STAT and MAPK and a pro-
inflammatory response. The exposure of A549 cells to the PB com-
bustion aerosols mainly influenced cellular transport processes (Figure
5). The gene-ontology based proteomics analysis revealed the induc-
tion of some DNA damage associated proteins in response to both, PB
(MGMT and TIGAR) and MH (SMARCAD1, UBE2V2, and KATS)
emissions (Figure 6), whereas no DNA damage was induced at the
transcriptomic level (Figure 5). It is known from the literature that,
TIGAR for example, regulates DNA damage and repair and SMAR-
CADI is involved DNA double-strand DNA break repair [68, 69].
This finding can be explained by assuming an immediate response
of the proteome e.g. by stabilizing the already synthesized proteins,
while the transcriptome shows the shut-down of the system in a time-
delayed response.

Further conclusions can be drawn from a specific biological path-
way analysis. The heat maps depicted in Figure 7 show that several
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Figure 4. Rank-product based regulation of proteins and mRNAs in ALI exposed A549 cells. Rank-product [40] was used to detect differentially expressed
genes and proteins between aerosol and clean air treatment groups for transcriptomics data in response to (A) MH and (B) PB and for proteomics data in
response to (C) MH and (D) PB combustion aerosols. The 2.5% most upregulated and downregulated genes with pfp < 0.1 and 25% most upregulated and
downregulated proteins with pfp < 0.1 were considered as differentially regulated and selected for further analysis.

pro-inflammatory markers like IL8, IL24, IL6, and CCL20 for exam-
ple, were induced after MH emission exposure and only IL6 was in-
duced after the PB emission exposure. It was already shown under
submersed conditions that exposure of A549 cells to the PM sample
from MH increase in IL-8 production in a dose-dependent way, while
the PB combustion did not raise IL-8 levels above the background [15].
It has been shown in epidemiological studies that low-grade systemic
inflammation might trigger the onset of cardiovascular and pulmonary
diseases [70, 71]. Moreover, MAPK signaling was activated in re-
sponse to the MH wood combustion aerosol. This could be due to the
higher abundant carbon fraction, which was shown to activate MAPK
in normal human bronchial epithelial cells [72]. After exposure of the
A549 cells to the PB combustion aerosol, mostly intracellular trans-
port processes were activated (Figure 7).

Moreover, cytochrome P450 1A1 (CYP1A1) was induced by ex-
posure to the MH combustion aerosol in A549 cells, in line with previ-
ous studies on wood smoke particles under submerged conditions [54].
CyplAl is considered to be a key metabolic enzyme for the metabolism
of benz[a]pyrene and related PAH structures corresponding to the high-
est benz[a]pyrene and PAH concentrations in MH combustion aerosol
(Figure S5B and 3C) [73]. The metabolism of PAHs requires metabolic
activation by cytochrome P450 enzymes to more reactive metabolites

[74, 75]. Since PAHs are hazardous due to their carcinogenic and mu-
tagenic effects triggered by their genotoxic metabolites, its activation
by the PAH-rich log wood emissions suggests that chronically adverse
health effects might be more relevant in case of MH combustion com-
pared to the PB emissions.

It was previously described that at high doses of wood smoke par-
ticles under submersed conditions, production of free radicals occurs,
thereby inducing DNA damage as well as inflammatory and oxidative
stress response gene expression in A549 cells [10]. However, in our
present experiments, the applied dose of wood combustion aerosols
was much lower in order to avoid enhanced cytotoxicity. Therefore,
the acute sub-cytotoxic effect from MH combustion exposure was
the induction of several pro-inflammatory markers and DNA double-
strand break repair in the absence of significant induction of oxidative
stress. Neither were oxidative stress associated genes induced after PB
combustion aerosol exposure (Figure 7B).

The comparison to the results from the shipping emissions study
from Oeder et al., (2015) at similar to PB and 3-fold lower than MH
deposition dose (Figure S4A) showed that in contrast to the wood
combustion aerosols DF particles strongly affected basic cellular func-
tions such as energy metabolism, which indicated that mitochondrial
stress was induced. Furthermore, mechanisms which are yet poorly
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Figure 7. Heat map representation of selected relevant genes in ALI exposed A549 cells based on transcriptomics data. Gene regulation of (A) inflammation,

(B) oxidative stress, (C) MAPK signaling and (D) Regulation of transport.

known to be affected by aerosol treatment, such as RNA processing
and chromatin modifications were activated, which reflected promi-
nent proteomic and transcriptomic regulation (Figure S7A) [28]. Most
probably, the complete aerosol (the particles and the gases) from ship
DF emission would cause even stronger effects. Phenolic compounds
were more abundant in the wood combustion aerosols compared to
shipping emissions and have been discussed as strongly antioxidative
constituents of wood smoke in the literature (Figure S4B) [56]. More-
over, the anti-oxidative compounds may be responsible for the previ-
ously observed lower relative toxicities of wood combustion aerosols
in comparison with diesel car emissions (without particle filter) [56,
76=79]. Phenols and other oxygen-containing compounds are also
potential trapping agents for electrophilic genotoxic compounds that
are considered to be carcinogenic [80]. It was already shown in the
Boise campaign by Cupitt et al. (1994) that for the same dose of
combustion material, the lifetime lung cancer risk was estimated to
be much higher for the particles from mobile sources than for the par-
ticles from residential wood burning due to extractable organic mat-
ter [81]. Moreover, the high soot content in the MH particles could
reduce the bioavailability of PM-associated air-toxicants by absorp-
tion of harmful substances on the carbon matrix (Figure 2E). The soot
in the carbonaceous fraction provides good adsorptive properties, thus
many compounds can easily bind to it [82].

Summary

To identify possibly harmful cellular effects of wood combustion de-
rived aerosols, extensive transcriptomics, and proteomics analyses was
used in combination with chemical and physical aerosol characteriza-
tion. This was targeted to assemble a broad overview of the cellular
mechanisms affected by aerosol emissions of modern wood combus-
tion compliances PB and MH. Our study revealed that the chemical
compositions of the two wood combustion aerosols and their induced

biological pathways differed largely. The PB, currently considered as
very efficient renewable and clean way for residential heating, showed,
in accordance with the literature, significantly lower emissions of PM
and hazardous organic substances compared to the MH. The PB com-
bustion was less toxic than MH in several endpoints, namely MAPK
signaling, inflammatory response and CYP1A1 induction. Further-
more, diluted aerosol emissions of both compliances induced rela-
tively mild biological responses, indicated by small changes in the
proteome, in the exposed A549 cells when compared to equally di-
luted ship diesel engine emissions.

In conjunction with the preceding work on ship diesel emissions,
the results of the current study suggest that it is difficult to estimate the
(acute) toxicological impact of aerosol emissions just by the PM; s
concentration or the concentration of specific chemical constituents
and toxicants. This is caused by antagonistic and synergistic effects of
different chemicals and aerosol properties.

Our findings support the previously described hypotheses that phe-
nolic antioxidants, present in wood combustion aerosol, influence their
toxicity and may mitigate adverse effects of some pollutants. This
serves as a major motivation towards further studies to investigate the
role of phenolic antioxidants, using aerosols with known properties
and chemical composition from a combustion-aerosol generator, with
defined spiking of phenolic compounds. In this study, primary emis-
sions were investigated. As primary emissions will change quickly in
the atmosphere, the aging of combustion aerosols will be included in
further experiments.

Despite the relatively low subacute toxicity of the PB and MH
emissions, the high concentration of genotoxic compounds suggests
public health protection measures for application of residential wood
heating in densely populated areas. In this context, filter systems for
small-scale MHs as well as for PBs, which are either under develop-
ment or are already available shall be promoted to reduce the health
risks caused by residential wood combustion.
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