1,399 research outputs found

    The impact of degassing on the oxidation state of basaltic magmas: A case study of KÄ«lauea volcano

    Get PDF
    Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer – hence preserving mantle conditions – or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of KÄ«lauea volcano (Hawai‘i). We show that the oxidation state of these melts is strongly correlated with their volatile content, particularly in respect of water and sulfur contents. We argue that sulfur degassing has played a major role in the observed reduction of iron in the melt, while the degassing of H2_{2}O and CO2_{2} appears to have had a negligible effect on the melt oxidation state under the conditions investigated. Using gas–melt equilibrium degassing models, we relate the oxidation state of the melt to the composition of the gases emitted at KÄ«lauea. Our measurements and modelling yield a lower constraint on the oxygen fugacity of the mantle source beneath KÄ«lauea volcano, which we infer to be near the nickel nickel-oxide (NNO) buffer. Our findings should be widely applicable to other basaltic systems and we predict that the oxidation state of the mantle underneath most hotspot volcanoes is more oxidised than that of the associated lavas. We also suggest that whether the oxidation states of a basalt (in particular MORB) reflects that of its source, is primarily determined by the extent of sulfur degassing.We thank the Diamond Light Source for access to beamline I18 (proposal number SP11497-1) that contributed to the results presented here and the invaluable support during our analytical sessions from Konstantin Ignatyev. The Smithsonian Institution National Museum of Natural History is thanked for their loan of NMNH 117393. We thank Don Swanson (HVO-USGS) for his help acquiring the samples. YM acknowledges support from the Scripps Institution of Oceanography Postdoctoral Fellowship program. We are grateful to Nicole MĂ©trich and an anonymous reviewer for providing valuable comments improving the quality of the manuscript. ME and CO are supported by the Natural Environment Research Council via the Centre for Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET). NP is also funded by the Natural Environment Research Council (grant NE/N009312/1). NERC-funded studentship funded sample collection. ME acknowledges NERC ion probe grant IMF376/0509.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.epsl.2016.06.031

    Charged Cylindrical Collapse of Anisotropic Fluid

    Full text link
    Following the scheme developed by Misner and Sharp, we discuss the dynamics of gravitational collapse. For this purpose, an interior cylindrically symmetric spacetime is matched to an exterior charged static cylindrically symmetric spacetime using the Darmois matching conditions. Dynamical equations are obtained with matter dissipating in the form of shear viscosity. The effect of charge and dissipative quantities over the cylindrical collapse are studied. Finally, we show that homogeneity in energy density and conformal flatness of spacetime are necessary and sufficient for each other.Comment: 19 pages, accepted for publication in Gen. Relativ. Gra

    Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas

    Get PDF
    The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasma is isentropically overstable, the wave amplitude grows, the strength of the shock increases and the breaking time decreases. The magnitude of the above effects depends upon the angle between the wave vector and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar abundances either in the interstellar medium or in the solar atmosphere, as well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature where the plasma is isentropically unstable and the corresponding time and length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200

    Diffuse Lyman Alpha Haloes around Lyman Alpha Emitters at z=3: Do Dark Matter Distributions Determine the Lyman Alpha Spatial Extents?

    Get PDF
    Using stacks of Ly-a images of 2128 Ly-a emitters (LAEs) and 24 protocluster UV-selected galaxies (LBGs) at z=3.1, we examine the surface brightness profiles of Ly-a haloes around high-z galaxies as a function of environment and UV luminosity. We find that the slopes of the Ly-a radial profiles become flatter as the Mpc-scale LAE surface densities increase, but they are almost independent of the central UV luminosities. The characteristic exponential scale lengths of the Ly-a haloes appear to be proportional to the square of the LAE surface densities (r(Lya) \propto Sigma(LAE)^2). Including the diffuse, extended Ly-a haloes, the rest-frame Ly-a equivalent width of the LAEs in the densest regions approaches EW_0(Lya) ~ 200 A, the maximum value expected for young (< 10^7 yr) galaxies. This suggests that Ly-a photons formed via shock compression by gas outflows or cooling radiation by gravitational gas inflows may partly contribute to illuminate the Ly-a haloes; however, most of their Ly-a luminosity can be explained by photo-ionisation by ionising photons or scattering of Ly-a photons produced in HII regions in and around the central galaxies. Regardless of the source of Ly-a photons, if the Ly-a haloes trace the overall gaseous structure following the dark matter distributions, it is not surprising that the Ly-a spatial extents depend more strongly on the surrounding Mpc-scale environment than on the activities of the central galaxies.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    Weighing Super-Massive Black Holes with Narrow Fe Kα\alpha Line

    Full text link
    It has been suggested that the narrow cores of the Fe Kα\alpha emission lines in Active Galactic Nuclei (AGNs) are likely produced in the torus, the inner radius of which can be measured by observing the lag time between the VV and KK band flux variations. In this paper we compare the virial products of the infrared time lags and the narrow Fe Kα\alpha widths for 10 type 1 AGNs with the black hole masses from other techniques. We find the narrow Fe Kα\alpha line width is in average 2.6−0.4+0.9^{+0.9}_{-0.4} times broader than expected assuming an isotropic velocity distribution of the torus at the distance measured by the infrared lags. We propose the thick disk model of the torus could explain the observed larger line width. Another possibility is the contamination by emission from the broad line region or the outer accretion disk. Alternatively, the narrow iron line might originate from the inner most part of the obscuring torus within the sublimation radius, while the infrared emission from outer cooler part. We note the correlation between the black hole masses based on this new technique and those based on other known techniques is statistically insignificant. We argue that this could be attributed to the small sample size and the very large uncertainties in the measurements of iron K line widths. The next generation of X-ray observatories could help verify the origin of the narrow iron Kα\alpha line and the reliability of this new technique.Comment: 12 pages, 2 figures, 2 tables, Science China G, in pres

    Time-Translation Invariance of Scattering Maps and Blue-Shift Instabilities on Kerr Black Hole Spacetimes

    Full text link
    In this paper, we provide an elementary, unified treatment of two distinct blue-shift instabilities for the scalar wave equation on a fixed Kerr black hole background: the celebrated blue-shift at the Cauchy horizon (familiar from the strong cosmic censorship conjecture) and the time-reversed red-shift at the event horizon (relevant in classical scattering theory). Our first theorem concerns the latter and constructs solutions to the wave equation on Kerr spacetimes such that the radiation field along the future event horizon vanishes and the radiation field along future null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the future event horizon. Our second theorem constructs solutions to the wave equation on rotating Kerr spacetimes such that the radiation field along the past event horizon (extended into the black hole) vanishes and the radiation field along past null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the Cauchy horizon. The results make essential use of the scattering theory developed in [M. Dafermos, I. Rodnianski and Y. Shlapentokh-Rothman, A scattering theory for the wave equation on Kerr black hole exteriors, preprint (2014) available at \url{http://arxiv.org/abs/1412.8379}] and exploit directly the time-translation invariance of the scattering map and the non-triviality of the transmission map.Comment: 26 pages, 12 figure

    Metal Enrichment in the Reionization Epoch

    Full text link
    The presence of elements heavier than helium ("metals") is of fundamental importance for a large number of astrophysical processes occurring in planet, star and galaxy formation; it also affects cosmic structure formation and evolution in several ways. Even a small amount of heavy elements can dramatically alter the chemistry of the gas, opening the path to complex molecules. Metals might enhance the ability of the gas to radiate away its thermal energy, thus favoring the formation of gravitationally bound objects; they can also condensate in a solid phase (dust grains), partly or totally blocking radiation from luminous sources. Finally, they represent useful tracers of energy deposition by stars and probe the physical properties of the environment by absorption or emission lines. Last, but certainly not least, life -- as we know it on Earth -- is tightly related to the presence of at least some of the heavy elements. In this pedagogical review I will concentrate on the connection between early metal enrichment and cosmic reionization. As we will see these two processes are intimately connected and their joint study might turn out to be fundamental in understanding the overall evolution of the Universe during the first billion years after the Big Bang, an epoch corresponding to redshifts z>6.Comment: Book chapter in Understanding the Epoch of Cosmic Reionization: Challenges and Progress, Springer International Publishing, Ed. Andrei Mesinger, ISBN 978-3-319-21956-1. arXiv admin note: text overlap with arXiv:astro-ph/0007248 by other author

    Hamiltonian formalism for the Oppenheimer-Snyder model

    Get PDF
    A family of effective actions in Hamiltonian form is derived for a self-gravitating sphere of isotropic homogeneous dust. Starting from the Einstein-Hilbert action for barotropic perfect fluids and making use of the symmetry and equation of state of the matter distribution we obtain reduced actions for two canonical variables, namely the radius of the sphere and its ADM energy, the latter being conserved along trajectories of the former. These actions differ by the value of the (conserved) geodesic energy of the radius of the sphere which defines (disconnected) classes of solutions in correspondence to the inner geometry and proper volume of the sphere. Each class is thus treated as one constrained dynamical system and the union of all classes covers the full phase space of the model. Generalization to the (inhomogeneous) Tolman model is shown to be straightforward. Quantization is also discussed.Comment: RevTeX, 10 pages, no figure

    Dark halo baryons not in ancient halo white dwarfs

    Get PDF
    Having ruled out the possibility that stellar objects are the main contributor of the dark matter embedding galaxies, microlensing experiments cannot exclude the hypothesis that a significant fraction of the Milky Way dark halo might be made of MACHOs with masses in the range 0.5-0.8 \msun. Ancient white dwarfs are generally considered the most plausible candidates for such MACHOs. We report the results of a search for such white dwarfs in a proper motion survey covering a 0.16 sqd field at three epochs at high galactic latitude, and 0.938 sqd at two epochs at intermediate galactic latitude (VIRMOS survey), using the CFH telescope. Both surveys are complete to I = 23, with detection efficiency fading to 0 at I = 24.2. Proper motion data are suitable to separate unambiguously halo white dwarfs identified by belonging to a non rotating system. No candidates were found within the colour-magnitude-proper motion volume where such objects can be safely discriminated from any standard population as well as from possible artefacts. In the same volume, we estimate the maximum white dwarf halo fraction compatible with this observation at different significance levels if the halo is at least 14 gigayears old and under different ad hoc initial mass functions. Our data alone rules out a halo fraction greater than 14% at 95% confidence level. Combined with two previous investigations exploring comparable volumes pushes the limit below 4 % (95% confidence level) or below 1.3% (64% confidence), this implies that if baryonic dark matter is present in galaxy halos, it is not, or it is only marginally in the form of faint hydrogen white dwarfs.Comment: accepted in Astronomy and Astrophysics (19-05-2004

    Stochastic Gravity

    Get PDF
    Gravity is treated as a stochastic phenomenon based on fluctuations of the metric tensor of general relativity. By using a (3+1) slicing of spacetime, a Langevin equation for the dynamical conjugate momentum and a Fokker-Planck equation for its probability distribution are derived. The Raychaudhuri equation for a congruence of timelike or null geodesics leads to a stochastic differential equation for the expansion parameter Ξ\theta in terms of the proper time ss. For sufficiently strong metric fluctuations, it is shown that caustic singularities in spacetime can be avoided for converging geodesics. The formalism is applied to the gravitational collapse of a star and the Friedmann-Robertson-Walker cosmological model. It is found that owing to the stochastic behavior of the geometry, the singularity in gravitational collapse and the big-bang have a zero probability of occurring. Moreover, as a star collapses the probability of a distant observer seeing an infinite red shift at the Schwarzschild radius of the star is zero. Therefore, there is a vanishing probability of a Schwarzschild black hole event horizon forming during gravitational collapse.Comment: Revised version. Eq. (108) has been modified. Additional comments have been added to text. Revtex 39 page
    • 

    corecore