410 research outputs found

    Prosecutorial Immunity: Through The Looking Glass

    Get PDF

    Galactic outflows and the kinematics of damped Lyman alpha absorbers

    Get PDF
    The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodynamical simulations that include a heuristic model for galactic outflows. Without outflows, our simulations fail to yield enough wide DLAs, as in previous studies. With outflows, predicted DLA kinematics are in much better agreement with observations. Comparing two outflow models, we find that a model based on momentum-driven wind scalings provides the best match to the observed DLA kinematic statistics of Prochaska & Wolfe. In this model, DLAs typically arise a few kpc away from galaxies that would be identified in emission. Narrow DLAs can arise from any halo and galaxy mass, but wide ones only arise in halos with mass >10^11 Mo, from either large central or small satellite galaxies. This implies that the success of this outflow model originates from being most efficient at pushing gas out from small satellite galaxies living in larger halos. This increases the cross-section for large halos relative to smaller ones, thereby yielding wider kinematics. Our simulations do not include radiative transfer effects or detailed metal tracking, and outflows are modeled heuristically, but they strongly suggest that galactic outflows are central to understanding DLA kinematics. An interesting consequence is that DLA kinematics may place constraints on the nature and efficiency of gas ejection from high-z galaxies.Comment: submitted to MNRA

    Parametrising Star Formation Histories

    Full text link
    We examine the star formation histories (SFHs) of galaxies in smoothed particle hydrodynamics (SPH) simulations, compare them to parametric models that are commonly used in fitting observed galaxy spectral energy distributions, and examine the efficacy of these parametric models as practical tools for recovering the physical parameters of galaxies. The commonly used tau-model, with SFR ~ exp(-t/tau), provides a poor match to the SFH of our SPH galaxies, with a mismatch between early and late star formation that leads to systematic errors in predicting colours and stellar mass-to-light ratios. A one-parameter lin-exp model, with SFR ~ t*exp(-t/tau), is much more successful on average, but it fails to match the late-time behavior of the bluest, most actively star-forming galaxies and the passive, "red and dead" galaxies. We introduce a 4-parameter model, which transitions from lin-exp to a linear ramp after a transition time, which describes our simulated galaxies very well. We test the ability of these parametrised models to recover (at z=0, 0.5, and 1) the stellar mass-to-light ratios, specific star formation rates, and stellar population ages from the galaxy colours, computed from the full SPH star formation histories using the FSPS code of Conroy et al. (2009). Fits with tau-models systematically overestimate M/L by ~ 0.2 dex, overestimate population ages by ~ 1-2 Gyr, and underestimate sSFR by ~ 0.05 dex. Fits with lin-exp are less biased on average, but the 4-parameter model yields the best results for the full range of galaxies. Marginalizing over the free parameters of the 4-parameter model leads to slightly larger statistical errors than 1-parameter fits but essentially removes all systematic biases, so this is our recommended procedure for fitting real galaxies.Comment: 28 pages, 18 figure

    Intergalactic Dust Extinction in Hydrodynamic Cosmological Simulations

    Get PDF
    Recently Menard et al. detected a subtle but systematic change in the mean color of quasars as a function of their projected separation from foreground galaxies, extending to comoving separations of ~10Mpc/h, which they interpret as a signature of reddening by intergalactic dust. We present theoretical models of this remarkable observation, using SPH cosmological simulations of a (50Mpc/h)^3 volume. Our primary model uses a simulation with galactic winds and assumes that dust traces the intergalactic metals. The predicted galaxy-dust correlation function is similar in form to the galaxy-mass correlation function, and reproducing the MSFR data requires a dust-to-metal mass ratio of 0.24, about half the value in the Galactic ISM. Roughly half of the reddening arises in dust that is more than 100Kpc/h from the nearest massive galaxy. We also examine a simulation with no galactic winds, which predicts a much smaller fraction of intergalactic metals (3% vs. 35%) and therefore requires an unphysical dust-to-metal ratio of 2.18 to reproduce the MSFR data. In both models, the signal is dominated by sightlines with E(g-i)=0.001-0.1. The no-wind simulation can be reconciled with the data if we also allow reddening to arise in galaxies up to several x 10^10 Msun. The wind model predicts a mean visual extinction of A_V ~0.0133 mag out to z=0.5, with a sightline-to-sightline dispersion similar to the mean, which could be significant for future supernova cosmology studies. Reproducing the MSFR results in these simulations requires that a large fraction of ISM dust survive its expulsion from galaxies and its residence in the intergalactic medium. Future observational studies that provide higher precision and measure the dependence on galaxy type and environment will allow detailed tests for models of enriched galactic outflows and the survival of IG dust.Comment: Matches version accepted by MNRA

    The Photon Underproduction Crisis

    Full text link
    We examine the statistics of the low-redshift Lyman-alpha forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate required by our simulations to match the observed properties of the low-redshift Lyman-alpha forest is a factor of 5 larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch results in the mean flux decrement of the Lyman-alpha forest being underpredicted by at least a factor of 2 (a 10-sigma discrepancy with observations) and a column density distribution of Lyman-alpha forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must be significantly elevated relative to current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.Comment: Submitted to ApJ Letters; 6 pages including 3 figure

    Feedback and Recycled Wind Accretion: Assembling the z=0 Galaxy Mass Function

    Get PDF
    We analyse cosmological hydrodynamic simulations that include observationally-constrained prescriptions for galactic outflows. If these simulated winds accurately represent winds in the real Universe, then material previously ejected in winds provides the dominant source of gas infall for new star formation at redshifts z<1. This recycled wind accretion, or wind mode, provides a third physically distinct accretion channel in addition to the "hot" and "cold" modes emphasised in recent theoretical studies. Because of the interaction between outflows and gas in and around halos, the recycling timescale of wind material (t_rec) is shorter in higher-mass systems, which reside in denser gaseous environments. In these simulations, this differential recycling plays a central role in shaping the present-day galaxy stellar mass function (GSMF). If we remove all particles that were ever ejected in a wind, then the predicted GSMFs are much steeper than observed; galaxy masses are suppressed both by the direct removal of gas and by the hydrodynamic heating of their surroundings, which reduces subsequent infall. With wind recycling included, the simulation that incorporates our favoured momentum-driven wind scalings reproduces the observed GSMF for stellar masses 10^9 < M < 5x10^10 Msolar. At higher masses, wind recycling leads to excessive galaxy masses and excessive star formation rates relative to observations. In these massive systems, some quenching mechanism must suppress the re-accretion of gas ejected from star-forming galaxies. In short, as has long been anticipated, the form of the GSMF is governed by outflows; the unexpected twist here for our simulated winds is that it is not primarily the ejection of material but how the ejected material is re-accreted that governs the GSMF.Comment: 16 pages, 7 figures, accepted by MNRA

    Orbital migration of interacting low-mass planets in evolutionary radiative turbulent models

    Full text link
    The torques exerted by a locally isothermal disk on an embedded planet lead to rapid inward migration. Recent work has shown that modeling the thermodynamics without the assumption of local isothermality reveals regions where the net torque on an embedded planet is positive, leading to outward migration of the planet. When a region with negative torque lies directly exterior to this, planets in the inner region migrate outwards and planets in the outer region migrate inwards, converging where the torque is zero. We incorporate the torques from an evolving non-isothermal disk into an N-body simulation to examine the behavior of planets or planetary embryos interacting in the convergence zone. We find that mutual interactions do not eject objects from the convergence zone. Small numbers of objects in a laminar disk settle into near resonant orbits that remain stable over the 10 Myr periods that we examine. However, either or both increasing the number of planets or including a correlated, stochastic force to represent turbulence drives orbit crossings and mergers in the convergence zone. These processes can build gas giant cores with masses of order ten Earth masses from sub-Earth mass embryos in 2-3 Myr.Comment: 15 pages, 11 figures. Accepted for publication in Ap

    Six rapid assessments of alcohol and other substance use in populations displaced by conflict

    Get PDF
    BACKGROUND: Substance use among populations displaced by conflict is a neglected area of public health. Alcohol, khat, benzodiazepine, opiate, and other substance use have been documented among a range of displaced populations, with wide-reaching health and social impacts. Changing agendas in humanitarian response-including increased prominence of mental health and chronic illness-have so far failed to be translated into meaningful interventions for substance use. METHODS: Studies were conducted from 2006 to 2008 in six different settings of protracted displacement, three in Africa (Kenya, Liberia, northern Uganda) and three in Asia (Iran, Pakistan, and Thailand). We used intervention-oriented qualitative Rapid Assessment and Response methods, adapted from two decades of experience among non-displaced populations. The main sources of data were individual and group interviews conducted with a culturally representative (non-probabilistic) sample of community members and service providers. RESULTS: Widespread use of alcohol, particularly artisanally-produced alcohol, in Kenya, Liberia, Uganda, and Thailand, and opiates in Iran and Pakistan was believed by participants to be linked to a range of health, social and protection problems, including illness, injury (intentional and unintentional), gender-based violence, risky behaviour for HIV and other sexually transmitted infection and blood-borne virus transmission, as well as detrimental effects to household economy. Displacement experiences, including dispossession, livelihood restriction, hopelessness and uncertain future may make communities particularly vulnerable to substance use and its impact, and changing social norms and networks (including the surrounding population) may result in changed - and potentially more harmful-patterns of use. Limited access to services, including health services, and exclusion from relevant host population programmes, may exacerbate the harmful consequences. CONCLUSIONS: The six studies show the feasibility and value of conducting rapid assessments in displaced populations. One outcome of these studies is the development of a UNHCR/WHO field guide on rapid assessment of alcohol and other substance use among conflict-affected populations. More work is required on gathering population-based epidemiological data, and much more experience is required on delivering effective interventions. Presentation of these findings should contribute to increased awareness, improved response, and more vigorous debate around this important but neglected area
    • …
    corecore