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ABSTRACT
Recently Ménard et al. (hereafter MSFR) detected a subtle but systematic change in the mean
color of quasars as a function of their projected separationfrom foreground galaxies, extend-
ing to comoving separations of∼ 10h−1Mpc, which they interpret as a signature of redden-
ing by intergalactic dust. We present theoretical models ofthis remarkable observation, using
smoothed particle hydrodynamic (SPH) cosmological simulations of a(50h−1Mpc)3 volume.
Our primary model uses a simulation with galactic winds and assumes that dust traces the in-
tergalactic metals. The predicted galaxy-dust correlation function is similar in form to the
galaxy-mass correlation function, and reproducing the MSFR data requires a dust-to-metal
mass ratio of 0.24, about half the value in the Galactic ISM. Roughly half of the redden-
ing arises in dust that is more than100h−1kpc from the nearest massive galaxy. We also
examine a simulation with no galactic winds, which predictsa much smaller fraction of in-
tergalactic metals (3% vs. 35%) and therefore requires an unphysical dust-to-metal ratio of
2.18 to reproduce the MSFR data. In both models, the signal isdominated by sightlines with
E(g − i) = 0.001− 0.1. The no-wind simulation can be reconciled with the data if wealso
allow reddening to arise in galaxies up to several×1010M⊙. The wind model predicts a mean
visual extinction of〈AV 〉 ≈ 0.0133 mag out toz = 0.5, with a sightline-to-sightline disper-
sion similar to the mean, which could be significant for future supernova cosmology studies.
Reproducing the MSFR results in these simulations requiresthat a large fraction of ISM dust
survive its expulsion from galaxies and its residence in theintergalactic medium. Future ob-
servational studies that provide higher precision and measure the dependence on galaxy type
and environment will allow detailed tests for models of enriched galactic outflows and the
survival of intergalactic dust.

Key words: galaxies: formation — intergalactic medium

1 INTRODUCTION

Heavy element enrichment in intergalactic gas has long beenstud-
ied via absorption lines in quasar spectra and, in more restricted
regimes, via the influence of metal species on the X-ray emission
spectra of clusters and groups. In the Galactic interstellar medium
(ISM), roughly half of the mass of heavy elements is in solid phase
— interstellar dust — which is thought to contain roughly 2/3of
interstellar carbon and the great majority of interstellarmagne-
sium, silicon, and iron (Draine 2009 and references therein). This

⋆ E-mail: yingzu@astronomy.ohio-state.edu

solid-phase material is much more difficult to study in the inter-
galactic medium (IGM), in part because the expected level ofdust
extinction along any given line of sight is small, and in partbe-
cause the continuum spectra of potential background sources —
quasars, galaxies, and supernovae — show much greater varia-
tion than those of spectroscopically typed stars. In a recent break-
through study, Ménard et al. (2009, hereafter MSFR) used large
samples of quasars and galaxies from the Sloan Digital Sky Sur-
vey (SDSS; York et al. 2000) to measure reddening by intergalac-
tic dust, detecting a systematic change in quasar colors with in-
creasing distance from foreground galaxies, measured to comoving
projected separations of∼ 10h−1Mpc. In this paper, we use hy-
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2 Zu et al.

drodynamic cosmological simulations to provide the first theoreti-
cal models of the MSFR results and to infer their implications for
galactic outflows and the survival of dust in the IGM.

Ever since Chandrasekhar & Münch (1952) modeled the
opacity of interstellar matter using angular correlation statistics in
the brightness fluctuations of the Milky Way, there have beenef-
forts to constrain the presence of a diffuse dust component out-
side the Galaxy by measuring the extinction of background ob-
jects. Zwicky (1962) first claimed the existence of intracluster dust
in Coma based on the extinction of light from background clus-
ters, though his inferred level is certainly incompatible with more
modern constraints. Quasars are powerful “backlights” forstudy-
ing the transparency of the Universe across a wide range of cosmic
time. Ostriker & Heisler (1984) modeled the effects of uniform and
clumped dust distributions on the redshift evolution of quasar lu-
minosity functions, but they concluded that observations did not
clearly favor one specific dust distribution over another. Taking ad-
vantage of the efficiency and accurate calibration affordedby CCD
observations, Zaritsky (1994) averaged hundreds of background
galaxies to detect a mean color excess ofE(B − I) ∼ 0.067 be-
hind two nearby galactic halos, arguing for the existence ofdust
out to at least60h−1kpc. Ménard et al. (2008) also found evidence
of dust in the halos of L∗ galaxies via studies of MgII absorbers.
Confirming both findings, Kaneda et al. (2009) presented a direct
detection of extended far-IR dust emission in the halo of NGC253.
The existence of dust in the intracluster medium has remained con-
troversial, however, as reviewed by Muller et al. (2008), who de-
rived E(B − R) = 0.005 ± 0.008 from galaxies behind 458
RCS clusters. Using a larger sample of∼ 104 clusters from the
SDSS, Chelouche et al. (2007) obtained significant detections of
E(g − i) ≈ few × 10−3 out to several virial radii using the aver-
age colors of background quasars. Bovy et al. (2008) inferred up-
per limits at roughly the same level for a sample ofz ≈ 0.05 SDSS
clusters using the spectra of early-type galaxies, though their results
are not clearly inconsistent with Chelouche et al.’s.

MSFR instead examined the mean colors of 85,000 photo-
metrically identified quasars (Richards et al. 2004) as a function
of angular separation from 20 million foreground galaxies in a
3800 square degree sky area from the SDSS. They also used the
quasar brightnesses to infer the galaxy-mass correlation function
from weak lensing magnification. They found that the galaxy-dust
and galaxy-mass correlation functions track each other remark-
ably well, with a correlated dust surface density profileΣdust ∝
θ−0.8 detected out to angular separations that correspond to∼
10h−1Mpc. The color dependence of the reddening signal is con-
sistent with “standard” interstellar dust, though the constraints are
loose, implyingRV ≡ AV /E(B − V ) = 3.9 ± 2.6. The MSFR
results provide direct evidence for extended intergalactic dust ab-
sorption, with an inferred total dust mass comparable to theamount
of dust in galaxy disks.

Our primary model in this paper is based on a cosmolog-
ical smoothed particle hydrodynamics (SPH) simulation that in-
corporates the momentum-driven galactic wind prescription of
Oppenheimer & Davé (2006), which successfully matches several
observed aspects of gas-phase metal enrichment in galaxiesand
the IGM (see references in§2). In momentum-driven wind models,
radiation pressure on dust grains is the primary mechanism that
sweeps gas out of galaxies (Murray et al. 2005). We do not attempt
to model the survival of dust in the IGM; rather, we treat the ratio of
dust mass to heavy element mass as a free parameter to be inferred
by matching the MSFR reddening measurements. The metallicity
of the outflowing gas is assumed to equal that of the star-forming

gas, whose associated star formation effectively powers the out-
flow with radiation pressure. The model here is almost the converse
of the one treated by Aguirre et al. (2001), who considered radia-
tive expulsion of dust (without gas entrainment) and subsequent
destruction as a source of IGMgas enrichment. As alternatives to
the momentum-driven wind scenario, we also consider two mod-
els based on an SPH simulation without galactic winds. The first
assumes that the MSFR reddening signal arises in the simulation’s
enriched intergalactic gas, which comes mainly from ram pressure
and tidal stripping in groups and clusters. The second modelallows
additional absorption in low mass galaxies.

We hope to address a number of questions inspired by the
MSFR observations. Can the simulation with galactic winds ex-
plain these observations? What dust-to-metal mass ratio isrequired
to do so, and what does this imply about the survival of dust inthe
IGM? How is the dust distributed in the simulation? Do the models
without galactic winds provide a viable alternative explanation of
the MSFR findings? What further observations can test the model
predictions and provide greater insight into the origin andevolution
of intergalactic dust?

Section 2 describes our simulations and presents visual maps
of the predicted spatial distribution of intergalactic metals. Sec-
tion 3 presents our main results, including the predicted galaxy-dust
correlations and projected reddening profiles, the contributions to
the reddening signal from gas at different distances from high mass
galaxies, the relative amounts of galactic and intergalactic dust,
and the cumulative distribution functions of dust reddening. In sec-
tion 4, we briefly discuss the issues of dust survival and extinction
of high-redshift supernovae. Section 5 summarizes our results with
a look to potential future directions for observational studies.

2 SIMULATIONS AND METAL DISTRIBUTIONS

The simulations are performed using our modified
(Oppenheimer & Davé 2008) version of GADGET-2 (Springel
2005), which combines a tree-particle-mesh algorithm for grav-
itational calculations with smoothed particle hydrodynamics
(SPH, Lucy 1977; Gingold & Monaghan 1977). The cosmological
parameters areΩm = 0.25,ΩΛ = 0.75,Ωb = 0.044, H0 =
70 km s−1Mpc−1, σ8 = 0.8 andn = 0.95, in good agreement
with 5-year Wilkinson Microwave Anisotropy Probe (WMAP)
results (Hinshaw et al. 2009). We simulated the evolution of2883

dark matter particles and the same number of gas particles ina
periodic box with a comoving size 50h−1Mpc on a side. The
gas particle mass ismSPH = 9 × 107M⊙, and the gravitational
spline force softening isǫ = 4.9h−1kpc (comoving; equivalent
to Plummer softeningǫ = 3.5h−1kpc). We identify galaxies
using the program SKID1, which selects groups of stars and
cold (T < 3 × 104 K), dense (ρ/ρ̄baryon > 1000) gas particles
that are associated with a common density maximum. Convergence
tests indicate that the simulations resolve galaxies with baryonic
mass (stars plus cold gas) greater than∼ 64mSPH, corresponding
to 5.8× 109M⊙.

One of our simulations is similar to the L50/288 run analyzed
by Kereš et al. (2009a,b), with slightly different cosmology. Star
formation happens in a sub-resolution two-phase medium, where
thermal energy deposited by the supernovae pressurizes thegas but

1 http://www-hpcc.astro.washington.edu/tools/skid.html
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Dust in The Wind 3

Table 1. Gas-phase Metal Mass in the Two Simulations

Model All Z (1010M⊙) freeZ (1010M⊙)

Wind 288.0 100.7 (35.0%)
No-Wind 277.9 8.2 (3%)

does not drive outflows. We refer to the intergalactic dust distribu-
tion of this simulation as the “No-Wind Model.”

Our second simulation uses the same cosmological and nu-
merical parameters as the first one, but it incorporates the kinetic
feedback wind mechanism of GADGET-2 with the “momentum-
driven wind” scalings of Oppenheimer & Davé (2006); we re-
fer to the intergalactic dust distribution of this simulation as the
“Wind Model.” Motivated by the analytical model of Murray etal.
(2005), this second simulation scales the wind velocity with
the velocity dispersionσ of the galactic halo and the mass
loading factor (the ratio of gas ejection rate to star formation
rate) with σ−1. The implementation is discussed in more de-
tail by Oppenheimer & Davé (2008), though the simulation in
that paper has slightly different parameters. Simulationswith this
wind implementation successfully match observations of early
IGM enrichment (Oppenheimer & Davé 2006), the galaxy mass-
metallicity relation (Finlator & Davé 2008), OVI absorption at low
redshift (Oppenheimer & Davé 2009), enrichment and entropy lev-
els in galaxy groups (Davé et al. 2008), and the sub-L∗ regime
of the galaxy baryonic mass function (Oppenheimer et al. 2010).
However, there are both physical and numerical uncertainties in this
wind implementation, so we take it as a representative illustration
of how galactic winds could influence intergalactic dust. For the
purposes of our investigation, the key features of the wind model
are the total amount of metals expelled and the typical scaleover
which they are distributed.

The median redshift of the MSFR galaxy sample is〈z〉 ≃
0.36, and the effective luminosity2 is∼ 0.45L∗, with a correspond-
ing comoving space density ofng ∼ 0.01h3Mpc−3 (Blanton et al.
2003). To reasonably approximate the MSFR sample, we analyze
the z = 0.3 redshift outputs of the two simulations and apply a
galaxy baryonic mass cut of5.4× 1010M⊙ (∼ 600mSPH), which
yieldsng = 0.01h3Mpc−3 in the Wind Model. We apply the same
galaxy baryonic mass cut to the No-Wind Model, though in this
case the comoving space density is higher,ng = 0.033h3Mpc−3.
We enforce the same mass cut rather than the same number den-
sity for the two galaxy samples so that we are comparing two sim-
ilar populations of galaxies (with typical luminosity∼ 0.45L∗)
in different simulations.3 Note that we quote comoving distances
throughout the paper, and unless otherwise stated, the “galaxies”
we refer to are those above the mass threshold. Since we are in-
terested in modeling the reddening signal that iscorrelated with
galaxies, we do not need to include extinction that might arise at
lower or higher redshift than our simulation box, which would pro-

2 The effective luminosity is defined as the metallicity weighted mean
luminosity of the galaxy sample, assuming the metallicity-luminosity re-
lation of Tremonti et al. (2004) and a Schechter luminosity function with
α = −1.1.
3 If we instead select a sample withng ∼ 0.01h3Mpc−3 in the No-Wind
simulation, the galaxy-mass correlation rises by 1.4; our main conclusions
about the No-Wind model are immune to rescaling the galaxy-dust correla-
tion function by such a factor.

duce a mean shift and dispersion in quasar colors that is uncorre-
lated with the galaxy population in our simulation volume.

Four heavy elements (C, O, Si and Fe) are tracked in the sim-
ulation. In this exploratory work, we simply choose the total gas-
phase metallicity as the tracer of cosmic dust, because the amount
of dust should be proportional to the metal available if we assume
the relative proportions of refractory elements depend weakly on
enrichment. We define “free metals” to be those in gas particles that
are not associated withany SKID group (i.e., with no mass cut ap-
plied); recall that the SKID density threshold isρ/ρ̄baryon > 1000,
low enough to include gas in extended regions of the interstellar
medium. We generally include only these “free metals” when com-
puting the intergalactic dust extinction for comparison toMSFR,
on the assumption that quasars behind the optically thick disks of
galaxies will not make it into the SDSS sample because of obscu-
ration. The disks of bright galaxies cover a small fraction of the sky
in any case. However, for the No-Wind simulation we also consider
a “hybrid dust” calculation in which we include metals in galaxies
below5.4× 1010M⊙, allowing the possibility of the MSFR signal
arising in low luminosity galaxies.

Table 1 lists the total mass of all gas-phase metals (interstel-
lar plus intergalactic) and all free metals (intergalacticonly) in the
two simulations. The total gas-phase metal mass is nearly identical
in the two cases. This agreement is somewhat coincidental, as the
No-Wind simulation forms more stars but leaves a larger fraction
of its metals locked up in stars and stellar remnants. The mass of
free metals in the Wind simulation is 12 times higher, as much of
the enriched gas is ejected from galaxies. The top panels of Fig-
ure 1 show the projected density distribution of free metalsfrom
the two models in a25h−1Mpc × 25h−1Mpc slice of5h−1Mpc
thickness; the lower panels show a5h−1Mpc × 5h−1Mpc zoom
on the densest region of the slice. In these densest regions the free
metal distributions of the two models are fairly similar, tracing the
galaxy distributions inside groups and clusters. Intergalactic met-
als in the No-Wind simulation presumably come from a combina-
tion of tidal and ram pressure stripping, an enrichment process first
highlighted by Gnedin & Ostriker (1997). However, free metals in
the No-Wind simulation ariseonly in these dense group and cluster
environments, where stripping mechanisms can operate effectively.
The Wind simulation shows much more widely distributed metals,
in smaller halos and in the filaments that connect them. Thus,the
two simulations differ dramatically in the total amount of free met-
als and in the spatial distribution of these metals.

Large (small) circles in the lower panels mark zones of radius
100h−1kpc (30h−1kpc) around SKID groups more (less) massive
than 5.4 × 1010M⊙, which we will refer to in our analysis be-
low. The spatial distributions of SKID groups are similar inthe two
simulations, though masses are systematically lower in Wind sim-
ulation, converting some large circles to small circles.

3 GALAXY-DUST CORRELATIONS AND QUASAR
REDDENING

Figure 2 shows 3-dimensional auto- and cross-correlation functions
from the two simulations. For the cross-correlation functions, we
compute the (dark matter, gas, metal, or free metal) mass of neigh-
boring particles in spherical shells of successive radii, ranging from
10h−1kpc to 5h−1Mpc with logarithmic intervals, average over
all galaxies above our5.4 × 1010M⊙ threshold, and normalize by
the mass expected in a randomly located shell of equal volume. The
two dark matter autocorrelation functions are nearly identical, as

c© 0000 RAS, MNRAS000, 000–000
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Figure 1. Surface density maps of the free metals (i.e., metals not in galaxies) in the Wind Model (Left) and the No-Wind Model (Right), at redshiftz = 0.3.
Top panels show a25h−1Mpc × 25h−1Mpc × 5h−1Mpc (comoving) slice for each model, with the density scale color coded as in the bottom-left color
bar. Bottom panels show(5h−1Mpc)3 cubes zoomed into the densest region of the top two panels. Large circles of100h−1kpc radius indicate the positions
of SKID groups more massive than5.4× 1010M⊙, and small circles of30h−1kpc radius mark those less than5.4× 1010M⊙.

expected since the simulations have the same initial conditions and
the gravitational impact of wind feedback is tiny. The galaxy au-
tocorrelation and galaxy-dark matter cross-correlation are slightly
higher in the Wind Model (compare to the dark matter autocorrela-
tion at large scales) because in this simulation our5.4 × 1010M⊙

mass threshold picks out rarer objects with a stronger clustering
bias.

Turning to collisional components, the galaxy-gas correlation
in the No-Wind Model tracks the dark matter autocorrelationon
scales> 1h−1Mpc, then falls below it atr < 0.5h−1Mpc until
rising steeply inside 20h−1kpc because of dissipational condensa-
tion into disks. The deficit at intermediate scales probablyreflects
the removal of gas from the inner regions of halos by this condensa-
tion, and its subsequent conversion to stars. The galaxy-gas correla-
tion in the Wind Model tracks the dark matter autocorrelation until

the sharp upturn of the former inside 30h−1kpc. The absence of
an intermediate-scale deficit could be an effect of gas redistribution
by winds, or it could reflect the lower amount of stellar conversion
in this simulation. The galaxy-metal correlations trace the galaxy-
galaxy correlations beyond 0.5h−1Mpc in both simulations, which
is unsurprising since most of the metals reside in galaxies.How-
ever, in the No-Wind Model the cross-correlation of galaxies with
free metals is much higher amplitude, by roughly a factor of two at
all scales, because the free metals in this model arise only in group
and cluster regions, which are highly biased relative to galaxies and
dark matter.

To facilitate comparison with observations, we concentrate on
the direct observable in the MSFR paper, the average reddening
profile around galaxies,〈E(g − i)〉g, inferred from the change
in quasar colors as a function of projected separation. Notethat

c© 0000 RAS, MNRAS000, 000–000



Dust in The Wind 5

Figure 2. 3-dimensional correlation functions in the Wind Model (left) and No-Wind Model (right). Black dotted, solid, and dashed lines show the dark
matter autocorrelation, galaxy-dark matter cross-correlation, and galaxy autocorrelation functions, respectively. Blue dashed lines show the galaxy-gas cross-
correlation. Magenta and red dot-dashed lines show the cross-correlation of galaxies with all metals (short dashes) and free metals (long dashes), respectively.

we adopt comoving transverse distancerp rather than the angu-
lar/physical distance in the MSFR paper. To estimate〈E(g− i)〉g ,
we first calculate the projected correlation functionw(rp) between
galaxies and free metals in the two models by directly summing
metals through the simulation cube in annuli around galaxies, us-
ing x, y, and z projections. We then convertw(rp) to an aver-
age free-metal density profile, which we convert to an excessdust
surface density profileΣd(r) by multiplying by a dust-to-metal
ratio Rd/m. We convertΣd(r) to a rest-frame reddening profile
〈E(g−i)〉g assuming SMC-type dust as justified in MSFR, specif-
ically

〈E(g−i)〉g ≃ 1.52〈E(B−V )〉g =
3.8

ln(10)

Kext(λV)

RV

Σd(r) , (1)

where the factor1.52 comes from the conversion between two col-
ors adopting an extinction lawAλ ∝ λ−1.2 and Kext(λV) ≃
1.54×104 cm2g−1 is the absorption cross section per mass of SMC
dust in V-band. We choose the value ofRd/m to match the MSFR
data point atrp = 1h−1Mpc. While our standard calculation sim-
ply assigns all the metals associated with a particle to the annulus
in which it resides, we have checked that smoothing the metals over
the SPH kernel before projecting yields indistinguishableredden-
ing profiles.

Figure 3 shows the central result of this paper, predicted red-
dening profiles (solid black curves) for the Wind Model (left)
and No-Wind Model (right), in comparison to the MSFR data
points (from their Figure 6). By construction, the model curves go
through the MSFR data point atrp = 1h−1Mpc. For the Wind
Model, this normalization requiresRd/m = 0.24, i.e.,24% of the
free metal mass is in the form of dust. In the Milky Way inter-
stellar medium, roughly 50% of the metal mass is in dust (Draine
2009), soRd/m = 0.24 is physically plausible, but it requires that
a large fraction of the dust formed in the ISM survive the jour-
ney to and sojourn in intergalactic space. Given the normalization

at 1h−1Mpc, the model reproduces the shape of the MSFR pro-
file fairly well from rp = 20h−1kpc out torp = 5h−1Mpc, be-
yond which box-size effects can artificially depress the model pre-
dictions. MSFR show empirically that the galaxy-dust correlation
function approximately follows the galaxy-mass correlation func-
tion, which is what we find theoretically for the galaxy-freemetal
correlation function (Figure 2), so the approximate agreement of
shape is unsurprising.

For the No-Wind Model, the free metals would be insufficient
to explain MSFR reddening even if all of them were depleted onto
dust (gray solid line on the right panel). Matching the MSFR nor-
malization requiresRd/m = 2.18, i.e., 218% of the metal mass
in dust (black solid line on the right panel). This is physically im-
possible, of course, but a change in the dust grain size distribution
from the SMC dust assumed here could possibly achieve more effi-
cient reddening for a given amount of metal mass. In detail, nei-
ther model perfectly reproduces the shape of the MSFR data at
rp < 1h−1Mpc, where the “1-halo” regime of clustering begins
to dominate over the “2-halo” regime (see, e.g., Peacock & Smith
2000; Berlind & Weinberg 2002). The agreement is worse for the
No-Wind Model, where the halos hosting most of the intergalactic
dust are typically larger (see Figure 1). However, when we analyze
the three box projections individually, we find∼ 30% variations
from one to another, so we do not attribute much weight to these
discrepancies at present; we are also comparing predictions at fixed
redshift to inferences from angular correlations over a range of red-
shift. Blue curves in Figure 3 show the predicted reddening profiles
in the two models if we assume that dust traces intergalacticgas
rather than intergalactic metals. The MSFR normalization can be
reproduced for dust-to-gas mass ratios of2.3×10−4 (Wind Model)
or 3.1 × 10−4 (No-Wind Model), comparable to those inferred
from observations of dwarf galaxies (Lisenfeld & Ferrara 1998)
and nearby galaxies (Issa et al. 1990). However, the dust-traces-gas
reddening profiles flatten insiderp ≈ 0.1h−1kpc, in contrast to

c© 0000 RAS, MNRAS000, 000–000



6 Zu et al.

Figure 3. Average quasar reddening〈E(g − i)〉g as a function of comoving transverse distancerp to a foreground galaxy in the Wind Model (Left) and the
No-Wind Model (Right). In each panel, solid squares with error bars are the observational results from MSFR. The blue (black) solid line is the predicted
reddening profile assuming that dust traces gas (free metals), both normalized by matching the MSFR data point at1h−1Mpc, with the dust-to-gas or
dust-to-metal ratio indicated in the legend. Red dotted, magenta dashed and green long-dashed lines show the contribution to the reddening profile by metals
respectively50h−1kpc, 100h−1kpc, and200h−1kpc away from galaxies with baryonic massM > 5.4×1010M⊙. Reproducing the MSFR normalization
in the No-Wind Model with SMC duct requires an unphysical dust-to-metal ratio of2.18. The gray solid line in the right panel is the reddening profile for the
No-Wind Model with SMC dust and a dust-to-metal ratio of unity.

the dust-traces-metal profiles and the MSFR data points. In princi-
ple, observations like those of MSFR can test hypotheses about the
enrichment profiles of gas in galactic halos and the survivalof dust
as a function of distance from the source galaxy.

Dotted, short-dashed, and long-dashed lines in Figure 3 show
the reddening profiles measured from the simulations if we elim-
inate sightlines that pass within 50, 100, or 200h−1kpc, respec-
tively, of a galaxy above our5.4 × 1010M⊙ threshold, keeping
the dust-to-metal ratio the same. (Circles in Figure 1 show the
100h−1kpc exclusion zones for comparison.) In the Wind Model,
dust outside these three exclusion zones contributes75%, 50%, and
30% of the overall reddening signal at large scales. In the No-Wind
Model, the intergalactic dust is more tightly clumped around the
massive galaxies, and the reddening signal drops more rapidly with
radial exclusion, to68%, 34%, and12%, respectively. In addition
to characterizing the radial scale of intergalactic dust inour sim-
ulations, these curves provide testable predictions of ourmodels,
which can be implemented observationally by eliminating quasars
with small projected separations from foreground galaxiesbefore
computing the mean reddening profile.

Given the distinctive spatial patterns of the dust distributions
in Figure 1, we expect the cumulative distribution functions (CDFs)
of reddening to be quite different in the two models, with more of
the total extinction in the Wind Model arising at very lowE(g− i)
and more sightlines in the No-Wind Model being truly dust free.
Figure 4 confirms this expectation. We calculate each reddening
CDF by randomly picking sightlines within a given radial range
around any galaxy (not necessarily the closest galaxy) on a pro-

jected reddening map generated by thevista4 command in TIPSY5.
The black histogram in each panel shows the reddening CDF in
the projected separation bin at50h−1kpc < R < 100h−1kpc,
while the green and red histograms show200h−1kpc < R <
300h−1kpc and1.0h−1Mpc < R < 1.5h−1Mpc, respectively.
The star on each histogram indicates the meanE(g − i) value in
the corresponding radial bin, and the black dashed line shows the
mean amount of reddening in each simulation box. These mean ex-
tinction values are proportional to the total amount of dustin the
simulation box, and thus to the comoving box length of simula-
tion. In the Wind Model, the median reddening is≈ 10−3 mag in
the innermost radial bin, dropping to10−4 mag and10−4.4 mag in
the next two bins. In the No-Wind Model, on the other hand, most
sightlines are nearly dust free, with median reddening below 10−5

mag in all three radial bins. Only 3% of sightlines in the innermost
bin for the Wind Model have reddening greater than 0.01 mag, and
only 3.5% in the No-Wind Model. Unfortunately, because nearly
all sightlines have a reddening level that is small comparedto the
intrinsic dispersion of quasar colors, the large differences in the
CDFs of the two models are likely to be unobservable in practice.

The inset panels in Figure 4 show histograms ofE ·
p(log E)/Ē, the fractional contribution to the averageE(g − i)
from each bin shown in the CDF. In the Wind Model, contri-
butions to the mean reddening are broadly peaked in the range
E(g−i) = 0.001−0.03 mag, shifting towards lower values for the

4 vista creates a fits image whose pixel values are smoothed quantities cal-
culated by projecting the particles onto the grid using the SPH spline soft-
ening kernel.
5 http://hpcc.astro.washington.edu/tools/tipsy/tipsy.html
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Figure 4. Cumulative distribution functions (CDFs) of reddening forthree radial bins in the Wind Model (Left) and No-Wind Model (Right). In each panel, the
black histogram shows the reddening CDF of quasars with projected separation0.05h−1Mpc < R < 0.1h−1Mpc from a foreground galaxy, while green
and red histograms show corresponding CDFs for separations0.2h−1Mpc < R < 0.3h−1Mpc and1.0h−1Mpc < R < 1.5h−1Mpc, respectively. The
black dashed line indicates the average amount of reddeningthrough each simulation box, and the star on top of each histogram indicates the mean reddening
value for the radial bin. Inset panels show histograms ofE · p(log E)/Ē, the fractional contribution from eachlog E(g − i) bin to the average amount of
reddening marked by stars in the CDF. The histogram of each radial bin is indicated by the same color as in the main panel.

largest (1 − 1.5h−1Mpc) radial separation bin. Contributions for
the No-Wind Model also peak at 0.01 mag, though they continue
up to strongly reddened sightlines withE(g− i) = 0.1− 0.6 mag.
However, even if these noticeably reddened quasars were elimi-
nated from the sample (deliberately or by selection bias), the mean
reddening profile would barely change.

Figure 5 compares the correlated reddening signal from in-
tergalactic dust (tracing free metals) to the signal that would be
contributed by including dust from galaxies below a succession of
baryonic mass thresholds. We assume the same dust-to-metalmass
ratio inside and outside of galaxies. Beyondrp ≈ 30h−1kpc, the
shapes of the correlated reddening profiles are all similar,track-
ing the shapes of the galaxy-galaxy and galaxy-mass correlation
functions. When we consider dust in all galaxies (cyan dot-dashed
line), the normalization for the No-Wind Model is ten times higher
than that of the Wind Model, but this difference just reflectsthe
higher dust-to-metal ratio assumed to match the free-metalpredic-
tion to the MSFR data. If we eliminate galaxies with baryonicmass
M > 5.4× 1010M⊙, the reddening signal drops by a factor of six
in the Wind Model but only a factor of three in the No-Wind Model.
This difference reflects the greater efficiency of winds in ejecting
metal-enriched gas from lower mass galaxies. If we consideronly
galaxies below5.4 × 1010M⊙, the galactic dust is considerably
less than the intergalactic dust in the Wind Model, but consider-
ably more in the No-Wind Model. While the No-Wind Model has
several times more mass in galaxies, and a higher space density of
galaxies above a given mass threshold, the amount of metal mass
(and hence dust) in the two simulations is similar (Table 1).The
model differences in Figure 5 arise from the different distributions
of metals inside and outside galaxies.

With intergalactic dust alone, the No-Wind Model requires

an unphysical ratio 2.18 of dust mass to metal mass to reproduce
the MSFR data. However, Figure 5 shows that low mass galaxies
contain much more metal mass than the intergalactic medium in
the No-Wind Model. We therefore construct an alternative “hybrid
dust” model from the No-Wind simulation, in which we include
both dust associated with free metals and dust associated with low
mass galaxies. The upper limit for the baryonic mass of thosegalax-
ies is∼ few× 1010M⊙, largely determined by the total amount of
metal (both free and inside faint galaxies) that is requiredto achieve
a reasonable dust-to-metal ratio. For instance, if we include dust as-
sociated with galaxies withM < 1.5×1010M⊙, the “hybrid dust”
model would require87% of the metals in the form of dust. The re-
quired dust-to-metal ratio drops to60% if we increase the upper
limit of low mass galaxies to2.7 × 1010M⊙. To obtain a more
reasonable dust-to-metal ratio (0.1 < Rd/m < 0.5), we need an
upper limit of∼ 5× 1010M⊙. For the sake of uniformity of mass
thresholds in the paper, we setM = 5.4 × 1010M⊙ again to be
the maximum baryonic mass of “faint” galaxies. Figure 6 shows
the reddening profile and reddening CDF for this hybrid model,
and Figure 7 compares the extinction map of this model to those
of the Wind and No-Wind models. Reproducing the normalization
of the MSFR measurements requires a physically acceptable dust-
to-metal mass ratio of 0.39. The effect of excluding zones around
high mass galaxies is similar to that in the Wind Model (compare
the broken lines in the left panels of Figure 6 and Figure 3), ex-
cept for a precipitous drop in theR > 200h−1kpc curve beyond
rp = 3h−1Mpc. The reddening CDF is similar to that of the No-
Wind Model (compare the right hand panels of Figures 4 and 6).
While the addition of low mass galaxies reduces the number of
truly metal-free sightlines, the factor of 5.5 reduction inthe dust-to-
metal mass ratio compensates by shifting the previously obscured
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Figure 5. Reddening caused by dust in low mass galaxies in the Wind Model (Left) and No-Wind Model (Right). In each panel, solid squares are from MSFR,
and solid black lines show the reddening produced by intergalactic gas assuming a constant dust-to-metal ratio on all scales as in Fig. 3. Blue dot-dashed, green
long-dashed, magenta dashed, and red dotted, lines indicate the additional reddening when including dust contained bygalaxies with masses less than 0.6,
1.5, 2.7, and5.4× 1010M⊙, respectively. The sum of one of these curves with the black curve shows the reddening predicted if the MSFR sample included
quasars behind galaxies lower than the corresponding mass threshold, assuming the same dust-to-metal mass ratio both inside and outside of galaxies. Cyan
dot-dashed lines (the highest in each panel) show the reddening from dust inall galaxies.

sightlines to lower reddening values. One can see this behavior in
the extinction map of Figure 7: the extended blobs of free metals in
groups and clusters shrink because of the lower dust normalization
(the outer contours lie at a fixed reddening threshold of10−4), and
they are supplemented by a peppering of dots that show the low
mass galaxies tracing filamentary superclusters.

From the inset panel of Figure 6, one can see that the redden-
ing distribution of the hybrid model is bimodal, with a “galactic”
peak at high reddening and an “intergalactic” peak at low redden-
ing. While sightlines withE(g−i) > 0.1 are rare, they contribute a
large fraction of the mean reddening. These high reddening values
might change quasar colors or magnitudes enough to throw them
out of the quasar catalog used by MSFR for their measurement.
Moreover, the light of the foreground galaxy itself might eliminate
the background quasar from the input catalog, either by chang-
ing its color or by adding a detectable extended component that
changes the object classification. Atz = 0.3, a galaxy with bary-
onic mass5.4 × 1010M⊙ has apparent magnitudeg ≈ 20.4, as-
suming a stellar mass-to-light ratioM/Lg = 3M⊙/L⊙, while the
limit of the quasar catalog used by MSFR isg ≈ 21. Thus, at least
the brighter galaxies in the hybrid model would likely have asig-
nificant impact. We will not address the detailed selection questions
here, but the clearest test of the hybrid model would be to search for
signatures of blended galaxy light (perhaps by stacking theimages
of the selected quasars), as a function of separation from the bright
foreground galaxies used for the cross-correlation measurement.

MSFR argue that the dust in LMC-like dwarfs is insufficient
to explain the magnitude of their reddening signal. We concur with
this conclusion. Reproducing the MSFR data in the hybrid model
with a physical dust-to-metal mass ratio requires including galaxies
up to several times1010M⊙, far larger than the∼ 3×109M⊙ bary-

onic mass of the LMC (van der Marel et al. 2002). Furthermore,the
No-Wind simulation predicts a galaxy baryonic mass function that
is inconsistent with observations, with an excessive global fraction
of baryons converted to stars (Oppenheimer et al. 2010)6. We do
not consider the hybrid dust model to be nearly as plausible an ex-
planation of the MSFR results as the Wind Model; we present it
as a foil to illustrate what would be required to explain MSFR’s
findings with dust in low mass galaxies. For the Wind Model, the
metals in low mass galaxies contribute much less reddening than
the intergalactic metals (Figure 5).

4 DISCUSSION

For the Wind Model to succeed, we require that the dust-to-metal
mass ratio in the IGM be comparable to that in the ISM, allow-
ing only ∼ 50% of the ISM dust to be destroyed during its ex-
pulsion from galaxies and subsequent residence in the IGM. The
validity of this assumption is by no means obvious, as the destruc-
tion timescales for0.01µm dust grains by thermal sputtering are∼
107.5(nH/10−3 cm−3)−1 years atT = 106 K (Draine & Salpeter
1979, Figure 7), while wind particles in the simulation typically re-
main in the IGM for∼ 109 years before reaccreting onto galaxies
(Oppenheimer et al. 2010, Figure 2). However, the sputtering rates
decline rapidly towards lower temperatures (e.g., a factorof 300
lower atT = 105 K), and with the wind implementation used in
this simulation most ejected gas never rises above a few×104 K.

6 The Wind simulation predictions are reasonably consistentwith the ob-
served mass function for galaxies withL < L∗, though it still predicts
excessive galaxy masses aboveL∗.
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Figure 6. An alternative “hybrid” dust model including dust within low mass galaxies (M < 5.4 × 1010M⊙) in the No-Wind simulation.Left panel:
Comparison between extinction from hybrid dust (black solid line) and MSFR results (solid points). Red dotted, magentadashed and green long-dashed lines
indicate the extinction contribution from dust50h−1kpc, 100h−1kpc and200h−1kpc away from high mass (M > 5.4× 1010M⊙) galaxies, respectively.
Right panel: Cumulative distribution functions of reddening for the hybrid dust model. Black, green and red histograms show reddening CDFs of quasars in
three bins of radial separation (from high mass galaxies), respectively0.05 − 0.1, 0.1 − 0.2, and1.0 − 1.5h−1Mpc. The vertical dashed line indicates the
average amount of reddening through the box, while the starsmark the mean extinction value for each radial bin. Inset panel shows theE · p(log E)/Ē for
each radial bin, with the same format as Figure 4, but largery-axis range.

UV or X-ray background photons are another possible destruction
mechanism for IGM dust, but the intergalactic radiation field is
much lower intensity than the radiation field dust grains already
encounter in galactic star-forming regions.

A detailed consideration of dust survival in the IGM is be-
yond the scope of this initial investigation, but the MSFR re-
sults clearly raise it as an important subject for further study.
The combination of their measurements with our models gives
a fairly clear idea of what is required: survival of a substantial
fraction of ejected dust, and an extinction curve that has roughly
the color dependence of ISM dust. The temperature sensitivity of
thermal sputtering could lead to preferential destructionof ejected
dust in the higher mass halos that host a shock heated gas halo
(see Birnboim & Dekel 2003; Kereš et al. 2005; Dekel & Birnboim
2006; Kereš et al. 2009). In the Wind Model, most wind particles
in halos withM < 1013M⊙ haveT < 105 K, but about 2/3 of the
wind particles in halos withM > 1013M⊙ haveT > 3 × 106 K.
If sputtering does destroy intergalactic dust at these temperatures,
it could produce distinctive drops in the galaxy-reddeningcorre-
lation when it is evaluated for massive galaxies or for galaxies in
dense environments. The recent study of McGee & Balogh (2010),
which examines the correlation of background quasar colorswith
projected separation from galaxy groups of varying richness, pro-
vides some hint of such an effect, but their innermost point is at
r = 1h−1Mpc, close to the virial radius of typical group mass ha-
los. Moreover, the Chelouche et al. (2007) measurements provide
direct evidence for dust survival in the cluster IGM. Draine(2009)
argues that ISM dust must form largelyin situ, from the depletion
of gas phase metals onto seed grains from supernovae and ejected
stellar envelopes, and that the dust abundance is determined by an

equilibrium between growth and destruction mechanisms. Growth
rates would be much slower in the low density IGM, but 2-body
destruction processes would have the same density scaling,so a
similar equilibrium abundance could arise.

Intergalactic dust could have an important impact on super-
nova cosmology studies, dimming and reddening supernovae in-
creasingly with redshift. Given perfect knowledge of supernova in-
trinsic colors and the shape of the extinction curve, intergalactic
extinction would be corrected automatically along with extinction
in the supernova host galaxy. However, the intergalactic and host
galaxy dust components could have different extinction curves,
complicating the analyses. Furthermore, the presence of intergalac-
tic dust means that no high-redshift supernovae have zero extinc-
tion, contrary to the assumption usually made in global models
of the supernova population. MSFR give a rough estimate of the
average extinction implied by their results,〈AV 〉 = 0.03 mag at
z = 0.5, but the inference of a mean extinction from thecorre-
lated reddening signal is (as MSFR emphasize) sensitive to uncer-
tain choices of radial profile cutoffs and luminosity extrapolations.
(See Ménard et al. 2010 for further discussion.)

Our simulation provides an explicit physical model of the
IGM metal distribution, and once the dust-to-metal mass ratio is
set by matching the MSFR data, it is straightforward to compute
the mean extinction by intergalactic dust. In the Wind Model, the
comoving dust densityρdust = 6.424 × 10−35g cm−3. Assuming
constant comoving dust density and extinction lawAλ ∝ λ−1.2,
we can compute mean extinction to any given redshiftz as

〈AV 〉 =
2.5Kext c

ln(10)

∫ z

0

(1 + z)3.2H(z)−1ρdustdz, (2)
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Figure 7. Comparison of reddening maps in the three dust models, each nor-
malized to the MSFR result at 1h−1Mpc. The regions shown are a quadrant
of the simulation cube,25h−1Mpc×25h−1Mpc×50h−1Mpc. Red/blue
regions indicate heavily/lightly reddened fields through the simulation, with
the color scale running fromE(g − i) = 10−5 up to0.1, logarithmically.

whereH(z) is the Hubble constant at redshiftz, respectively. The
(1 + z)3.2 term arises from the combination of cosmic areal ex-
pansion and rest-frame to observed V-band extinction conversion.
This yields a predicted mean extinction〈AV 〉 = 0.0133 mag and
a sightline-to-sightline variance of∆2 = (0.0272mag)2 for su-
pernovae atz = 0.5. More accurate estimates and an extrapola-
tion to higher redshifts will require the combined analysisof many
simulation outputs to track evolution. Our estimated extinction is
small compared to the statistical and systematic errors of current
surveys, but it is comparable to the ambitious goals set for next-
generation surveys of several thousand high-redshift supernovae.
At higher redshifts, furthermore, the (stronger) near-UV dust ex-
tinction gets redshifted into the observed-frame optical bands. We
have assumed SMC dust for this calculation; since we normalize to
MSFR’sE(g − i) measurements, the important assumption is the
value ofAV /E(g − i) = 4.7.

5 SUMMARY

Compared to the element-by-element and sightline-by-sightline
measurements of gas phase metals in quasar spectra, the correla-
tion of galaxy separation and quasar color used by MSFR is a rela-
tively blunt tool, requiring tens of thousands of background sources
to yield a statistical detection of an intrinsically weak effect, and
providing only a radial dependence and absolute normalization in
several color bands. Nonetheless, this tool provides unique insight
into an aspect of IGM enrichment that is virtually impossible to
study by other means. We have investigated the ability of SPHcos-
mological simulations with and without galactic winds to explain
MSFR’s remarkable results.

The Wind Model, based on an implementation of galactic
winds that has proven empirically successful in other contexts and
is motivated by theoretical models of momentum-driven outflows,
proves quite successful at reproducing the MSFR measurements,
provided that about 25% of the metal mass in the IGM is in the
form of SMC-like dust. This dust-to-metal mass ratio is roughly
half that in the Milky Way ISM, so this normalization is reasonable
provided dust survives its ejection from galaxies and its sojourn in
the IGM. Accounting for dust depletion would lower the predicted
level of intergalacticgas absorption in quasar spectra by∼ 25%,
at least for refractory elements such as carbon and silicon.In our
Wind simulation, about 1/3 of the metals are intergalactic,and 2/3
are in galaxies (not counting the metals locked up in stars),with
60% of the latter in galaxies of baryonic massM > 5.4×1010M⊙.
If we exclude sightlines that pass within 50, 100, and200h−1kpc
of galaxies above this mass threshold, then the large scale corre-
lated reddening signal drops to 75%, 50%, and 30% of the original
signal, demonstrating the large scale of the distributed metals and
providing an observationally testable diagnostic of the model (Fig-
ure 3). The cumulative distribution function (CDF) of reddening in
each radial separation bin is a prediction that is testable in prin-
ciple, but not in practice because the overall extinction isalways
dominated by sightlines withE(g − i) < 0.03 mag, small com-
pared to the intrinsic dispersion of quasar colors.

The No-Wind simulation has just 3% of its metals in the inter-
galactic medium, almost all of it in the dense halos of groupsand
clusters where tidal interactions and ram pressure can strip enriched
gas from member galaxies. The 3-dimensional cross-correlation
function of galaxies with free metals is highly biased, but because
the free metal fraction is so low to begin with, reproducing the
MSFR data requires an unphysical dust-to-metal mass ratio of 2.18
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in the IGM. This model could conceivably be made consistent with
the data if the grain size distribution were altered to give more
reddening for a given dust mass, though the consistency of the
MSFR band-dependent measurements with “standard” interstellar
dust limits any such effect. Compared to the Wind Model, radial
exclusion around high mass galaxies has a stronger effect onlarge
scale correlations, and the CDF shifts to somewhat higher values,
though still too low to allow measurement of the CDF in the pres-
ence of quasar color variations.

We have also considered a “hybrid” model that uses the No-
Wind simulation but includes reddening in galaxies with baryonic
massM < 5.4 × 1010M⊙ (which dominates the intergalactic
dust signal by a factor of2 − 4) when computing the large scale
galaxy-dust correlation. This model can reproduce the MSFRmea-
surements with a physically acceptable dust-to-metal massratio of
0.39. However, while sightlines withE(g − i) > 0.1 are still rare
in this model, they contribute a significant fraction of the mean
reddening. Moreover, the galaxies presumed to produce mostof
the reddening in this model might well have detectable effects on
quasar colors, visual morphologies, or spectra, and no sucheffects
have been reported. Predictions for this model are also moresen-
sitive to our mass and spatial resolution, and to the failureof the
No-Wind simulation to match the low mass end of the observed
galaxy baryonic mass function (Oppenheimer et al. 2010). Inthe
end, we consider both the No-Wind and hybrid models to be il-
lustrative demonstrations of how hard it is to reproduce theMSFR
datawithout widespread galactic outflows.

The large scale galaxy-dust correlation measured by MSFR
traces the shape of the galaxy-mass correlation function they infer
from gravitational magnification, which in turn traces the known
shape of the galaxy-galaxy correlation function. This large scale
shape is almost inevitable in any model where the dust originates
in galaxies, and we find it in all three of our models despite the
very different spatial distributions of the dust. However,on sub-
Mpc scales — the 1-halo regime — the detailed form of the cor-
relation function has substantial diagnostic power for thesources
of the dust, the extent and radial profile of outflows, and the sur-
vival of dust in these outflows, albeit in a combination that may
be difficult to untangle. In this regime, our three models predict
significantly different shapes, none of them in full agreement with
the data, and the shape of the galaxy-metal correlations is quite
different from the shape of the galaxy-gas correlations. Given the
fairly large (∼ 50%) observational error bars and our simplified
modeling of MSFR’s angular measurements in terms of projected
separations at an effective redshift, we have not attemptedto use
the detailed small-scale shape as a diagnostic or to assess the im-
plications of moderate discrepancies with our theoreticalpredic-
tions. However, future imaging surveys such as Pan-STARRS,the
Dark Energy Survey, and LSST will provide much larger sam-
ples of quasars and foreground galaxies, allowing higher precision
measurements in shells of photometric galaxy redshift. Over the
past decade, galaxy-galaxy lensing has progressed from thefirst
measurements of large scale galaxy-matter angular correlations
(Fischer et al. 2000) to detailed measurements of projectedmass
correlations as a function of galaxy luminosity, color, morphol-
ogy, and environment (McKay et al. 2001; Hoekstra et al. 2004;
Sheldon et al. 2004; Mandelbaum et al. 2006). We anticipate simi-
lar progress in the studies of galaxy-dust correlations over the com-
ing decade, providing new insights into the origin, evolution, and
observational impact of solid-phase material in the intergalactic
medium.
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Oppenheimer, B. D., & Davé, R. 2009, MNRAS, 395, 1875
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