286 research outputs found

    Dielectric responses of the layered cobalt oxysulfide Sr_2Cu_2CoO_2S_2 with CoO_2 square-planes

    Full text link
    We have studied the dielectric responses of the layered cobalt oxysulfide Sr2_2Cu2_2CoO2_2S2_2 with the CoO2_2 square-planes. With decreasing temperature below the N\'eel temperature, the resistivity increases like a semiconductor, and the thermopower decreases like a metal. The dielectric constant is highly dependent on temperature, and the dielectric relaxation is systematically changed with temperature, which is strongly correlated to the magnetic states. These behaviors suggest that carriers distributed homogeneously in the paramagnetic state at high temperatures are expelled from the antiferromagnetically ordered spin domain below the N\'eel temperature.Comment: 3 pages, 4 eps figures, to be published in J. Appl. Phy

    Stability of Simple Periodic Orbits and Chaos in a Fermi -- Pasta -- Ulam Lattice

    Full text link
    We investigate the connection between local and global dynamics in the Fermi -- Pasta -- Ulam (FPU) β\beta -- model from the point of view of stability of its simplest periodic orbits (SPOs). In particular, we show that there is a relatively high qq mode (q=2(N+1)/3)(q=2(N+1)/{3}) of the linear lattice, having one particle fixed every two oppositely moving ones (called SPO2 here), which can be exactly continued to the nonlinear case for N=5+3m,m=0,1,2,...N=5+3m, m=0,1,2,... and whose first destabilization, E2uE_{2u}, as the energy (or β\beta) increases for {\it any} fixed NN, practically {\it coincides} with the onset of a ``weak'' form of chaos preceding the break down of FPU recurrences, as predicted recently in a similar study of the continuation of a very low (q=3q=3) mode of the corresponding linear chain. This energy threshold per particle behaves like E2uNN2\frac{E_{2u}}{N}\propto N^{-2}. We also follow exactly the properties of another SPO (with q=(N+1)/2q=(N+1)/{2}) in which fixed and moving particles are interchanged (called SPO1 here) and which destabilizes at higher energies than SPO2, since E1uNN1\frac{E_{1u}}{N}\propto N^{-1}. We find that, immediately after their first destabilization, these SPOs have different (positive) Lyapunov spectra in their vicinity. However, as the energy increases further (at fixed NN), these spectra converge to {\it the same} exponentially decreasing function, thus providing strong evidence that the chaotic regions around SPO1 and SPO2 have ``merged'' and large scale chaos has spread throughout the lattice.Comment: Physical Review E, 18 pages, 6 figure

    The key physical parameters governing frictional dissipation in a precipitating atmosphere

    Full text link
    Precipitation generates small-scale turbulent air flows the energy of which ultimately dissipates to heat. The power of this process has previously been estimated to be around 2-4 W m-2 in the tropics: a value comparable in magnitude to the dynamic power of the global circulation. Here we suggest that this previous power estimate is approximately double the true figure. Our result reflects a revised evaluation of the mean precipitation path length Hp. We investigate the dependence of Hp on surface temperature,relative humidity,temperature lapse rate and degree of condensation in the ascending air. We find that the degree of condensation,defined as the relative change of the saturated water vapor mixing ratio in the region of condensation, is a major factor determining Hp. We estimate from theory that the mean large-scale rate of frictional dissipation associated with total precipitation in the tropics lies between 1 and 2 W m-2 and show that our estimate is supported by empirical evidence. We show that under terrestrial conditions frictional dissipation constitutes a minor fraction of the dynamic power of condensation-induced atmospheric circulation,which is estimated to be at least 2.5 times larger. However,because Hp increases with surface temperature Ts, the rate of frictional dissipation would exceed that of condensation-induced dynamics, and thus block major circulation, at Ts >~320 K in a moist adiabatic atmosphere.Comment: 12 pp, 2 figure

    Stratorotational instability in MHD Taylor-Couette flows

    Full text link
    The stability of dissipative Taylor-Couette flows with an axial stable density stratification and a prescribed azimuthal magnetic field is considered. Global nonaxisymmetric solutions of the linearized MHD equations with toroidal magnetic field, axial density stratification and differential rotation are found for both insulating and conducting cylinder walls. Flat rotation laws such as the quasi-Kepler law are unstable against the nonaxisymmetric stratorotational instability (SRI). The influence of a current-free toroidal magnetic field depends on the magnetic Prandtl number Pm: SRI is supported by Pm > 1 and it is suppressed by Pm \lsim 1. For too flat rotation laws a smooth transition exists to the instability which the toroidal magnetic field produces in combination with the differential rotation. This nonaxisymmetric azimuthal magnetorotational instability (AMRI) has been computed under the presence of an axial density gradient. If the magnetic field between the cylinders is not current-free then also the Tayler instability occurs and the transition from the hydrodynamic SRI to the magnetic Tayler instability proves to be rather complex. Most spectacular is the `ballooning' of the stability domain by the density stratification: already a rather small rotation stabilizes magnetic fields against the Tayler instability. An azimuthal component of the resulting electromotive force only exists for density-stratified flows. The related alpha-effect for magnetic SRI of Kepler rotation appears to be positive for negative d\rho/dz <0.Comment: 10 pages, 13 figures, submitted to Astron. Astrophy

    Low expression of gamma-glutamyl hydrolase mRNA in primary colorectal cancer with the CpG island methylator phenotype

    Get PDF
    Division of Translational and Clinical Oncolog

    Effects of small interfering RNA targeting thymidylate synthase on survival of ACC3 cells from salivary adenoid cystic carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thymidylate synthase (TS) is an important target for chemotherapeutic treatment of cancer and high expression of TS has been associated with poor prognosis or refractory disease in several cancers including colorectal and head and neck cancer. Although TS is known to regulate cell cycles and transcription factors, its potency as a therapeutic target has not been fully explored in adenoid cystic carcinoma (ACC).</p> <p>Methods</p> <p>An ACC cell line (ACC3) was transfected with siRNA targeting the TS gene and inhibition of cell growth and induction of apoptosis-associated molecules were evaluated <it>in vitro</it>. In addition, the <it>in vivo </it>effect of TS siRNA on tumor progression was assessed using a xenograft model.</p> <p>Results</p> <p>Our results demonstrated that ACC3 cells showed significantly higher TS expression than non-cancer cell lines and the induction of TS siRNA led to inhibition of cell proliferation. The effect was associated with an increase in p53, p21, and active caspase-3 and S-phase accumulation. We also found up-regulation of spermidine/spermine N1-acetyltransferase (SSAT), a polyamine metabolic enzyme. Furthermore, treatment with TS siRNA delivered by atelocollagen showed a significant cytostatic effect through the induction of apoptosis in a xenograft model.</p> <p>Conclusion</p> <p>TS may be an important therapeutic target and siRNA targeting TS may be of potential therapeutic value in ACC.</p

    Using Expression and Genotype to Predict Drug Response in Yeast

    Get PDF
    Personalized, or genomic, medicine entails tailoring pharmacological therapies according to individual genetic variation at genomic loci encoding proteins in drug-response pathways. It has been previously shown that steady-state mRNA expression can be used to predict the drug response (i.e., sensitivity or resistance) of non-genotyped mammalian cancer cell lines to chemotherapeutic agents. In a real-world setting, clinicians would have access to both steady-state expression levels of patient tissue(s) and a patient's genotypic profile, and yet the predictive power of transcripts versus markers is not well understood. We have previously shown that a collection of genotyped and expression-profiled yeast strains can provide a model for personalized medicine. Here we compare the predictive power of 6,229 steady-state mRNA transcript levels and 2,894 genotyped markers using a pattern recognition algorithm. We were able to predict with over 70% accuracy the drug sensitivity of 104 individual genotyped yeast strains derived from a cross between a laboratory strain and a wild isolate. We observe that, independently of drug mechanism of action, both transcripts and markers can accurately predict drug response. Marker-based prediction is usually more accurate than transcript-based prediction, likely reflecting the genetic determination of gene expression in this cross
    corecore