399 research outputs found
Recommended from our members
Reasoning about the antecedents of emotions: Bayesian causal inference over an intuitive theory of mind
It is commonly believed that expressions visually signal rich diagnostic information to human observers. We studied how observers interpret the dynamic expressions that people spontaneously produced during a real-life high-stakes televised game. We find that human observers are remarkably poor at recovering what events elicited others' facial and bodily expressions. Beyond simple inaccuracy, people's causal reasoning exhibits systematic model-based patterns of errors. We show that latent emotion representations can explain people's reasoning about the unseen causes of expressions. A hierarchical Bayesian model simulates which events people infer to be the cause of others' expressions by comparing the emotions inferred from the expressions against the emotions people were predicted to experience in various situations. This causal model provides a close, parameter-free fit to human causal judgments, suggesting that humans interpret expressions in the context of emotion predictions generated by a causally-structured mental model of other minds
Major qtls for trunk height and correlated agronomic traits provide insights into multiple trait integration in oil palm breeding
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Superior oil yield is always the top priority of the oil palm industry. Short trunk height (THT) and compactness traits have become increasingly important to improve harvesting efficiency since the industry started to suffer yield losses due to labor shortages. Breeding populations with low THT and short frond length (FL) are actually available, such as Dumpy AVROS pisifera (DAV) and Gunung Melayu dura (GM). However, multiple trait stacking still remains a challenge for oil palm breeding, which usually requires 12–20 years to complete a breeding cycle. In this study, yield and height increment in the GM × GM (GM-3341) and the GM × DAV (GM-DAV-3461) crossing programs were evaluated and palms with good yield and smaller height increment were identified. In the GM-3341 family, non-linear THT growth between THT_2008 (seven years old) and THT_2014 (13 years old) was revealed by a moderate correlation, suggesting that inter-palm competition becomes increasingly important. In total, 19 quantitative trait loci (QTLs) for THT_2008 (8), oil per palm (O/P) (7) and FL (4) were localized on the GM-3341 linkage map, with an average mapping interval of 2.01 cM. Three major QTLs for THT_2008, O/P and FL are co-located on chromosome 11 and reflect the correlation of THT_2008 with O/P and FL. Multiple trait selection for high O/P and low THT (based on the cumulative effects of positive alleles per trait) identified one palm from 100 palms, but with a large starting population of 1000–1500 seedling per cross, this low frequency could be easily compensated for during breeding selection
Transcriptome of oil palm (Elaeis guineensis Jacq.) roots treated with Ganoderma boninense
Basal stem rot (BSR) is the most devastating disease of oil palm. In this study, we examined the transcriptional responses of oil palm roots treated with a causal agent of BSR, Ganoderma boninense using a cDNA microarray approach. A total of 61 from 3,748 transcripts examined were found to be significantly up- or down-regulated in oil palm roots infected with G. boninense at 3 and 6 weeks post inoculation compared to those from uninfected roots. The differentially expressed genes identified in the artificially infected oil palm roots included genes encoding isoflavone reductase, Em protein H2, SPX domain-containing protein 1, pathogenesis-related protein 1, vicilin-like antimicrobial peptide. The gene expression of isoflavone reductase, which is involved in the production of phytoalexin and three related genes in the phenylpropanoid biosynthetic pathway was also profiled in the treated oil palms using real-time quantitative reverse transcription PCR. This information has contributed to our understanding of the defense mechanisms of oil palm in response to G. boninense, the future development of molecular markers for marker assisted breeding and screening of oil palms that are tolerant to G. boninense
Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning
It has been suggested that mitochondrial reactive oxygen species (ROS), Akt and Erk1/2 and more recently the mitochondrial permeability transition pore (mPTP) may act as mediators of ischaemic preconditioning (IPC), although the actual interplay between these mediators is unclear. The aim of the present study is to determine whether the cyclophilin-D (CYPD) component of the mPTP is required by IPC to generate mitochondrial ROS and subsequently activate Akt and Erk1/2.Mice lacking CYPD (CYPD-/-) and B6Sv129 wild-type (WT) mice were used throughout. We have demonstrated that under basal conditions, non-pathological mPTP opening occurs (indicated by the percent reduction in mitochondrial calcein fluorescence). This effect was greater in WT cardiomyocytes compared with CYPD-/- ones (53 +/- 2% WT vs. 17 +/- 3% CYPD-/-; P < 0.01) and was augmented by hypoxic preconditioning (HPC) (70 +/- 9% WT vs. 56 +/- 1% CYPD-/-; P < 0.01). HPC reduced cell death following simulated ischaemia-reperfusion injury in WT (23.2 +/- 3.5% HPC vs. 43.7 +/- 3.2% WT; P < 0.05) but not CYPD-/- cardiomyocytes (19.6 +/- 1.4% HPC vs. 24.4 +/- 2.6% control; P > 0.05). HPC generated mitochondrial ROS in WT (four-fold increase; P < 0.05) but not CYPD-/- cardiomyocytes. HPC induced significant Akt phosphorylation in WT cardiomyocytes (two-fold increase; P < 0.05), an effect which was abrogated by ciclosporin-A (a CYPD inhibitor) and N-2-mercaptopropionyl glycine (a ROS scavenger). Finally, in vivo IPC of adult murine hearts resulted in significant phosphorylation of Akt and Erk1/2 in WT but not CYPD-/- hearts.The CYPD component of the mPTP is required by IPC to generate mitochondrial ROS and phosphorylate Akt and Erk1/2, major steps in the IPC signalling pathway
An improved oil palm genome assembly as a valuable resource for crop improvement and comparative genomics in the Arecoideae subfamily
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Oil palm (Elaeis guineensis Jacq.) is the most traded crop among the economically important palm species. Here, we report an extended version genome of E. guineensis that is 1.2 Gb in length, an improvement of the physical genome coverage to 79% from the previous 43%. The improvement was made by assigning an additional 1968 originally unplaced scaffolds that were available publicly into the physical genome. By integrating three ultra-dense linkage maps and using them to place genomic scaffolds, the 16 pseudomolecules were extended. As we show, the improved genome has enhanced the mapping resolution for genome-wide association studies (GWAS) and permitted further identification of candidate genes/protein-coding regions (CDSs) and any non-coding RNA that may be associated with them for further studies. We then employed the new physical map in a comparative genomics study against two other agriculturally and economically important palm species—date palm (Phoenix dactylifera L.) and coconut palm (Cocos nucifera L.)—confirming the high level of conserved synteny among these palm species. We also used the improved oil palm genome assembly version as a palm genome reference to extend the date palm physical map. The improved genome of oil palm will enable molecular breeding approaches to expedite crop improvement, especially in the largest subfamily of Arecoideae, which consists of 107 species belonging to Arecaceae
Healthy Lifestyle Among School of Quantitative Sciences Lecturers, Universiti Utara Malaysia (UUM)
The role of individual healthy behaviors like physical activity, nutrition and stress management on reduction of rate of disease mortality and morbidity is well known. The aim of this study is to determine healthy lifestyle in lecturers employed in School of Quantitative Sciences, University Utara Malaysia, in 2019. Materials and Methods: The participants of this cross-sectional study were 66 lecturers in School of Quantitative Sciences, selected via random sampling method. The data collection was performed using a questionnaire including demographic healthy lifestyle questions. Analysis of the data was performed through Software Statistical Analysis System Enterprise Guide (SAS EG) version 7.1. Results: The mean age of the subjects was 42.68 ± 1.37 years and, BMI mean was 24.13 ± 0.86. 92.42% of them were married and 7.58% also were single. Conclusion: According to the results, planning for lecturers in School of Quantitative Sciences for receiving information about healthy lifestyle on weight control and nutrition are important
Characterizing haploinsufficiency of SHELL gene to improve fruit form prediction in introgressive hybrids of oil palm
The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, shᴹᴾᴼᴮ (M1) and shAVROS (M2) in the SHELL gene – a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (shAVROS, shᴹᴾᴼᴮ, shᴹᴾᴼᴮ², shᴹᴾᴼᴮ ³ and shᴹᴾᴼᴮ⁴) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm
Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments
In the NIPS 2017 Learning to Run challenge, participants were tasked with
building a controller for a musculoskeletal model to make it run as fast as
possible through an obstacle course. Top participants were invited to describe
their algorithms. In this work, we present eight solutions that used deep
reinforcement learning approaches, based on algorithms such as Deep
Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region
Policy Optimization. Many solutions use similar relaxations and heuristics,
such as reward shaping, frame skipping, discretization of the action space,
symmetry, and policy blending. However, each of the eight teams implemented
different modifications of the known algorithms.Comment: 27 pages, 17 figure
- …