386 research outputs found

    Defining the temporal evolution of gut dysbiosis and inflammatory responses leading to hepatocellular carcinoma in Mdr2 -/- mouse model.

    Full text link
    BACKGROUND: Emerging evidence implicates the gut microbiome in liver inflammation and hepatocellular carcinoma (HCC) development. We aimed to characterize the temporal evolution of gut dysbiosis, in relation to the phenotype of systemic and hepatic inflammatory responses leading to HCC development. In the present study, Mdr2 -/- mice were used as a model of inflammation-based HCC. Gut microbiome composition and function, in addition to serum LPS, serum cytokines/chemokines and intrahepatic inflammatory genes were measured throughout the course of liver injury until HCC development. RESULTS: Early stages of liver injury, inflammation and cirrhosis, were characterized by dysbiosis. Microbiome functional pathways pertaining to gut barrier dysfunction were enriched during the initial phase of liver inflammation and cirrhosis, whilst those supporting lipopolysaccharide (LPS) biosynthesis increased as cirrhosis and HCC ensued. In parallel, serum LPS progressively increased during the course of liver injury, corresponding to a shift towards a systemic Th1/Th17 proinflammatory phenotype. Alongside, the intrahepatic inflammatory gene profile transitioned from a proinflammatory phenotype in the initial phases of liver injury to an immunosuppressed one in HCC. In established HCC, a switch in microbiome function from carbohydrate to amino acid metabolism occurred. CONCLUSION: In Mdr2 -/- mice, dysbiosis precedes HCC development, with temporal evolution of microbiome function to support gut barrier dysfunction, LPS biosynthesis, and redirection of energy source utilization. A corresponding shift in systemic and intrahepatic inflammatory responses occurred supporting HCC development. These findings support the notion that gut based therapeutic interventions could be beneficial early in the course of liver disease to halt HCC development

    Randomized, Controlled Trial of the Long Term Safety, Immunogenicity and Efficacy of RTS,S/AS02(D) Malaria Vaccine in Infants Living in a Malaria-Endemic Region.

    Get PDF
    The RTS,S/AS malaria candidate vaccine is being developed with the intent to be delivered, if approved, through the Expanded Programme on Immunization (EPI) of the World Health Organization. Safety, immunogenicity and efficacy of the RTS,S/AS02(D) vaccine candidate when integrated into a standard EPI schedule for infants have been reported over a nine-month surveillance period. This paper describes results following 20 months of follow up. This Phase IIb, single-centre, randomized controlled trial enrolled 340 infants in Tanzania to receive three doses of RTS,S/AS02(D) or hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received DTPw/Hib (diphtheria and tetanus toxoids, whole-cell pertussis vaccine, conjugated Haemophilus influenzae type b vaccine) at the same timepoints. The study was double-blinded to month 9 and single-blinded from months 9 to 20. From month 0 to 20, at least one SAE was reported in 57/170 infants who received RTS,S/AS02(D) (33.5%; 95% confidence interval [CI]: 26.5, 41.2) and 62/170 infants who received hepatitis B vaccine (36.5%; 95% CI: 29.2, 44.2). The SAE profile was similar in both vaccine groups; none were considered to be related to vaccination. At month 20, 18 months after completion of vaccination, 71.8% of recipients of RTS,S/AS02(D) and 3.8% of recipients of hepatitis B vaccine had seropositive titres for anti-CS antibodies; seroprotective levels of anti-HBs antibodies remained in 100% of recipients of RTS,S/AS02(D) and 97.7% recipients of hepatitis B vaccine. Anti-HBs antibody GMTs were higher in the RTS,S/AS02(D) group at all post-vaccination time points compared to control. According to protocol population, vaccine efficacy against multiple episodes of malaria disease was 50.7% (95% CI: -6.5 to 77.1, p = 0.072) and 26.7% (95% CI: -33.1 to 59.6, p = 0.307) over 12 and 18 months post vaccination, respectively. In the Intention to Treat population, over the 20-month follow up, vaccine efficacy against multiple episodes of malaria disease was 14.4% (95% CI: -41.9 to 48.4, p = 0.545). The acceptable safety profile and good tolerability of RTS,S/AS02(D) in combination with EPI vaccines previously reported from month 0 to 9 was confirmed over a 20 month surveillance period in this infant population. Antibodies against both CS and HBsAg in the RTS,S/AS02(D) group remained significantly higher compared to control for the study duration. Over 18 months follow up, RTS,S/AS02(D) prevented approximately a quarter of malaria cases in the study population. CLINICAL TRIALS: Gov identifier: NCT00289185

    Distribution of fatty alcohols in surface sediments of the Endau River, Johor

    Get PDF
    The distribution and concentrations of extractable fatty alcohols in surface sediments of the Endau River were determined to identify their sources and variations. A total of 18 surface sediment samples were taken from Sungai Endau, Johor. Samples were then extracted and analyzed using a gas chromatography-mass spectrometer (GC-MS). Total fatty alcohol concentration ranged from 0.62 to 34.54 ngg-1 dry weight sediment. Generally, the study area is dominated by long chain fatty alcohols which are indicator for terrestrial organic matter. This is also supported by the ratio of short chain/long chain fatty alcohol and alcohol source index (ASI). This study showed the fatty alcohols detected in the study area originated from various sources with inputs from terrestrial being the more dominant sources

    Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents

    Get PDF
    Background Coffee and tea consumption was hypothesized to interact with variants of vitamin D-receptor polymorphisms, but limited evidence exists. Here we determine for the first time whether increased coffee and tea consumption affects circulating levels of 25-hydroxyvitamin D in a cohort of Saudi adolescents. Methods A total of 330 randomly selected Saudi adolescents were included. Anthropometrics were recorded and fasting blood samples were analyzed for routine analysis of fasting glucose, lipid levels, calcium, albumin and phosphorous. Frequency of coffee and tea intake was noted. 25-hydroxyvitamin D levels were measured using enzyme-linked immunosorbent assays. Results Improved lipid profiles were observed in both boys and girls, as demonstrated by increased levels of HDL-cholesterol, even after controlling for age and BMI, among those consuming 9–12 cups of coffee/week. Vitamin D levels were significantly highest among those consuming 9–12 cups of tea/week in all subjects (p-value 0.009) independent of age, gender, BMI, physical activity and sun exposure. Conclusion This study suggests a link between tea consumption and vitamin D levels in a cohort of Saudi adolescents, independent of age, BMI, gender, physical activity and sun exposure. These findings should be confirmed prospectively

    Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification

    Get PDF
    BACKGROUND: Decisions concerning malaria treatment depend on species identification causing disease. Microscopy is most frequently used, but at low parasitaemia (<20 parasites/μl) the technique becomes less sensitive and time consuming. Rapid diagnostic tests based on Plasmodium antigen detection do often not allow for species discrimination as microscopy does, but also become insensitive at <100 parasites/μl. METHODS: This paper reports the development of a sensitive and specific real-time Quantitative Nucleic Acid Sequence Based Amplification (real-time QT-NASBA) assays, based on the small-subunit 18S rRNA gene, to identify the four human Plasmodium species. RESULTS: The lower detection limit of the assay is 100 – 1000 molecules in vitro RNA for all species, which corresponds to 0.01 – 0.1 parasite per diagnostic sample (i.e. 50 μl of processed blood). The real-time QT-NASBA was further evaluated using 79 clinical samples from malaria patients: i.e. 11 Plasmodium. falciparum, 37 Plasmodium vivax, seven Plasmodium malariae, four Plasmodium ovale and 20 mixed infections. The initial diagnosis of 69 out of the 79 samples was confirmed with the developed real-time QT-NASBA. Re-analysis of seven available original slides resolved five mismatches. Three of those were initially identified as P. malariae mono-infection, but after re-reading the slides P. falciparum was found, confirming the real-time QT-NASBA result. The other two slides were of poor quality not allowing true species identification. The remaining five discordant results could not be explained by microscopy, but may be due to extreme low numbers of parasites present in the samples. In addition, 12 Plasmodium berghei isolates from mice and 20 blood samples from healthy donors did not show any reaction in the assay. CONCLUSION: Real-time QT-NASBA is a very sensitive and specific technique with a detection limit of 0.1 Plasmodium parasite per diagnostic sample (50 μl of blood) and can be used for the detection, identification and quantitative measurement of low parasitaemia of Plasmodium species, thus making it an effective tool for diagnostic purposes and useful for epidemiological and drug studies

    Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release

    Get PDF
    Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed

    Submicroscopic Gametocytes and the Transmission of Antifolate-Resistant Plasmodium falciparum in Western Kenya

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up. CONCLUSIONS/SIGNIFICANCE: In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites

    Toll-Like Receptor (TLR) and Nucleosome-binding Oligomerization Domain (NOD) gene polymorphisms and endometrial cancer risk

    Get PDF
    Background: Endometrial cancer is the most common gynaecological malignancy in women of developed countries. Many risk factors implicated in endometrial cancer trigger inflammatory events; therefore, alterations in immune response may predispose an individual to disease. Toll-like receptors (TLRs) and nucleosome-binding oligomerization domain (NOD) genes are integral to the recognition of pathogens and are highly polymorphic. For these reasons, the aim of the study was to assess the frequency of polymorphic variants in TLR and NOD genes in an Australian endometrial cancer population. Methods: Ten polymorphisms were genotyped in 191 endometrial cancer cases and 291 controls using real-time PCR: NOD1 (rs2075822, rs2907749, rs2907748), NOD2 (rs5743260, rs2066844, rs2066845), TLR2 (rs5743708), TLR4 (rs4986790) and TLR9 (rs5743836, rs187084). Results: Haplotype analysis revealed that the combination of the variant alleles of the two TLR9 polymorphisms, rs5743836 and rs187084, were protective for endometrial cancer risk: OR 0.11, 95% CI (0.03-0.44), p = 0.002. This result remained highly significant after adjustment for endometrial cancer risk factors and Bonferroni correction for multiple testing. There were no other associations observed for the other polymorphisms in TLR2, TLR4, NOD1 and NOD2. Conclusions: The variant 'C' allele of rs5743836 causes greater TLR9 transcriptional activity compared to the 'T' allele, therefore, higher TLR9 activity may be related to efficient removal of microbial pathogens within the endometrium. Clearly, the association of these TLR9 polymorphisms and endometrial cancer risk must be further examined in an independent population. The results point toward the importance of examining immune response in endometrial tumourgenesis to understand new pathways that may be implicated in disease

    Spatial estimation of average daily precipitation using multiple linear regression by using topographic and wind speed variables in tropical climate

    Get PDF
    Complex topography and wind characteristics play important roles in rising air masses and in daily spatial distribution of the precipitations in complex region. As a result, its spatial discontinuity and behaviour in complex areas can affect the spatial distribution of precipitation. In this work, a two-fold concept was used to consider both spatial discontinuity and topographic and wind speed in average daily spatial precipitation estimation using Inverse Distance Weighting (IDW) and Multiple Linear Regression (MLR) in tropical climates. First, wet and dry days were identified by the two methods. Then the two models based on MLR (Model 1 and Model 2) were applied on wet days to estimate the precipitation using selected predictor variables. The models were applied for month wise, season wise and year wise daily averages separately during the study period. The study reveals that, Model 1 has been found to be the best in terms of categorical statistics, R2 values, bias and special distribution patterns. However, it was found that sets of different predictor variables dominates in different months, seasons and years. Furthermore, necessities of other data for further enhancement of the results were suggested

    Molecular epidemiology of drug-resistant malaria in western Kenya highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the late 1980s a series of malaria epidemics has occurred in western Kenya highlands. Among the possible factors that may contribute to the highland malaria epidemics, parasite resistance to antimalarials has not been well investigated.</p> <p>Methods</p> <p>Using parasites from highland and lowland areas of western Kenya, we examined key mutations associated with <it>Plasmodium falciparum </it>resistance to sulfadoxine – pyrimethamine and chloroquine, including dihydrofolate reductase (<it>pfdhfr</it>) and dihydropteroate synthetase (<it>pfdhps</it>), chloroquine resistance transporter gene (<it>pfcrt</it>), and multi-drug resistance gene 1 (<it>pfmdr1</it>).</p> <p>Results</p> <p>We found that >70% of samples harbored 76T <it>pfcrt </it>mutations and over 80% of samples harbored quintuple mutations (51I/59R/108N <it>pfdhfr </it>and 437G/540E <it>pfdhps</it>) in both highland and lowland samples. Further, we did not detect significant difference in the frequencies of these mutations between symptomatic and asymptomatic malaria volunteers, and between highland and lowland samples.</p> <p>Conclusion</p> <p>These findings suggest that drug resistance of malaria parasites in the highlands could be contributed by the mutations and their high frequencies as found in the lowland. The results are discussed in terms of the role of drug resistance as a driving force for malaria outbreaks in the highlands.</p
    corecore