517 research outputs found
Maximally incompressible neutron star matter
Relativistic kinetic theory, based on the Grad method of moments as developed
by Israel and Stewart, is used to model viscous and thermal dissipation in
neutron star matter and determine an upper limit on the maximum mass of neutron
stars. In the context of kinetic theory, the equation of state must satisfy a
set of constraints in order for the equilibrium states of the fluid to be
thermodynamically stable and for perturbations from equilibrium to propagate
causally via hyperbolic equations. Application of these constraints to neutron
star matter restricts the stiffness of the most incompressible equation of
state compatible with causality to be softer than the maximally incompressible
equation of state that results from requiring the adiabatic sound speed to not
exceed the speed of light. Using three equations of state based on experimental
nucleon-nucleon scattering data and properties of light nuclei up to twice
normal nuclear energy density, and the kinetic theory maximally incompressible
equation of state at higher density, an upper limit on the maximum mass of
neutron stars averaging 2.64 solar masses is derived.Comment: 8 pages, 2 figure
Effect of Interband Transitions on the c axis Penetration Depth of Layered Superconductors
The electromagnetic response of a system with two planes per unit cell
involves, in addition to the usual intraband contribution, an added interband
term. These transitions affect the temperature dependence and the magnitude of
the zero temperature c-axis penetration depth. When the interplane hopping is
sufficiently small, the interband transitions dominate the low temperature
behaviour of the penetration depth which then does not reflect the linear
temperature dependence of the intraband term and in comparison becomes quite
flat even for a d-wave gap. It is in this regime that the pseudogap was found
in our previous normal state calculations of the c-axis conductivity, and the
effects are connected.Comment: 8 pages, 5 figure
The Organization of Agricultural Research in Western Developed Countries
This paper reviews agricultural research structural and organization changes in western developed countries, examines new financing prospects for agricultural research, and provides some tentative conclusions about which organizations are best positioned to provide services for the 21st century. Giventhat these countries faces many similar economic, political, scientific, andagroclimatic factors and fiscal issues, we canexpect a similar set of similar new developments thathave potentially important and widespread long-run implications. After three common developments are outlined, principles ofimpure public good financing are applied leading to the following agricultural science policy recommendations (i) new political jurisdictions should be formed to finance research, e.g., new alliances across countries and subregions within large countries, (ii) intellecmal property rights should be strengthened to increase the total amount and share oftotal (public and private) agricultural research that is privately financed and conducted, i.e., the private sector should find it profitable to undertake a large share ofapplied research but not be expected to finance public sector agriculmral research, (iii) the public sector should redirect its research efforts increasingly to areas that are socially worthwhile but not privately undertaken, e.g.,in the basic and pretechnology areas, on envkonmental, resources, food safety and human nutrition, and policy. Finally, large countries that have developed asystem ofshared public and private financmg and performance and decentralized public support ofagricultural research seem best position for meeting the needs ofthe 21st centur
Deficiencies in the soil quality concept and its application
Soil quality is a concept that has deeply divided the soil science community. It has
been institutionalized and advocated without full consideration of concept weaknesses and
contradictions. Our paper highlights its disfunctional definition, flawed approach to
quantification, and failure to integrate simultaneous functions, which often require contradictory
soil properties and/or management. While the concept arose from a call to protect the
environment and sustain the soil resource, soil quality indexing as implemented may actually
impair some soil functions, environmental quality, or other societal priorities. We offer the
alternative view that emphasis on known principles of soil management is a better expenditure of
limited resources for soil stewardship than developing and deploying subjective indices which fail
to integrate across the necessary spectrum of management outcomes. If the soil quality concept
is retained, we suggest precisely specifying soil use, not function or capacity, as the criteria for
attribute evaluation. Emphasis should be directed toward using available technical information to
motivate and educate farmers on management practices that optimize the combined goals of high
crop production, low environmental degradation, and a sustained resource
BIOLEACHING OF COBALT AND ZINC FROM PYRITE ORE IN RELATION TO CALCITIC GANGUE CONTENT
Bioleaching of a pyrite ore containing high concentrations of cobalt (0.1%) and zinc (0.065%) was affected by small amounts of calcitic gangue (from 0.01 to 1.01%). Results from an air-lift percolator and from Erlenmeyer flask experiments show that a small percentage of calcite raises the pH and arrests the growth of the acidophilic bacterium Thiobacillus ferrooxidans. In percolator experiments, when calcite is completely removed by the continuous addition of small quantities of acid, and the pH of the liquor becomes acid, the micro-organism begins to grow and to bio-oxidize the pyrite ore. The growth of T. ferrooxidans shows different lag phase spans (from 13 to 190 days) depending on carbonate dissolution. The metals Fe, Zn and Co are released into the leaching solution together at different rates after a lag-time which depends on calcite concentrations in pyrite gangue. Metal ratios in the mineral bulk are different from those in the liquor, Zn dissolving 5 times more readily than Co. Bioleaching rates for metal removal from pyrite are higher in percolator (for Fe, from 5 to 15 mg/l/h) than in flask experiments (from 0.5 to 2 mg/l/h), but the lag phases are shorter (from 2 to 65 days). The differences between the two systems are related to calcite dissolution and gypsum precipitation
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
- …