64 research outputs found

    Stories of Active Teaching: Embedding Civic Engagement in our Practice

    Get PDF
    How do we move beyond the well-worn path of information discovery and evaluation in our instruction? Join librarians and archivists from Western University and Huron University College, as we share stories that explore teaching civic engagement as an IL learning outcome

    Guidelines of the American Society of Mammalogists for the use of wild mammals in research

    Get PDF
    Guidelines for use of wild mammal species are updated from the American Society of Mammalogists (ASM) 2007 publication. These revised guidelines cover current professional techniques and regulations involving mammals used in research and teaching. They incorporate additional resources, summaries of procedures, and reporting requirements not contained in earlier publications. Included are details on marking, housing, trapping, and collecting mammals. It is recommended that institutional animal care and use committees (IACUCs), regulatory agencies, and investigators use these guidelines as a resource for protocols involving wild mammals. These guidelines were prepared and approved by the ASM, working with experienced professional veterinarians and IACUCs, whose collective expertise provides a broad and comprehensive understanding of the biology of nondomesticated mammals in their natural environments. The most current version of these guidelines and any subsequent modifications are available at the ASM Animal Care and Use Committee page of the ASM Web site (http://mammalsociety.org/committees/index.asp).American Society of Mammalogist

    Biology and Impacts of Pacific Island Invasive Species: 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)

    Get PDF
    The greenhouse frog, Eleutherodactylus planirostris, is a direct-developing (i.e., no aquatic stage) frog native to Cuba and the Bahamas. It was introduced to Hawaii via nursery plants in the early 1990s and then subsequently from Hawaii to Guam in 2003. The greenhouse frog is now widespread on five Hawaiian Islands and Guam. Infestations are often overlooked due to the frog’s quiet calls, small size, and cryptic behavior, and this likely contributes to its spread. Because the greenhouse frog is an insectivore, introductions may reduce invertebrates. In Hawaii, the greenhouse frog primarily consumes ants, mites, and springtails, and obtains densities of up to 12,500 frogs ha-1. At this density, it is estimated that they can consume up to 129,000 invertebrates ha-1 night-1. They are a food source for the non-native brown tree snake in Guam and may be a food source for other non-native species. They may also compete with other insectivores for available prey. The greatest direct economic impacts of the invasions are to the nursery trade that must treat infested shipments. Although various control methods have been developed to control frogs in Hawaii, and citric acid, in particular, is effective in reducing greenhouse frogs, the frog’s inconspicuous nature often prevents populations from being identified and managed

    Different Prey Resources Suggest Little Competition Between Non-Native Frogs and Insectivorous Birds Despite Isotopic Niche Overlap

    Get PDF
    Non-native amphibians often compete with native amphibians in their introduced range, but their competitive effects on other vertebrates are less well known. The Puerto Rican coqui frog (Eleutherodactylus coqui) has colonized the island of Hawaii, and has been hypothesized to compete with insectivorous birds and bats. To address if the coqui could compete with these vertebrates, we used stable isotope analyses to compare the trophic position and isotopic niche overlap between the coqui, three insectivorous bird species, and the Hawaiian hoary bat. Coquis shared similar trophic position to Hawaii amakihi, Japanese white-eye, and red-billed leiothrix. Coquis were about 3 ‰ less enriched in δ15N than the Hawaiian hoary bat, suggesting the bats feed at a higher trophic level than coquis. Analyses of potential diet sources between coquis and each of the three bird species indicate that there was more dietary overlap between bird species than any of the birds and the coqui. Results suggest that Acari, Amphipoda, and Blattodea made up \u3e90% of coqui diet, while Araneae made up only 2% of coqui diet, but approximately 25% of amakihi and white-eye diet. The three bird species shared similar proportions of Lepidoptera larvae, which were ~25% of their diet. Results suggest that coquis share few food resources with insectivorous birds, but occupy a similar trophic position, which could indicate weak competition. However, resource competition may not be the only way coquis impact insectivorous birds, and future research should examine whether coqui invasions are associated with changes in bird abundance

    Novel Associations between Common Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures.

    Get PDF
    Mammographic density measures adjusted for age and body mass index (BMI) are heritable predictors of breast cancer risk, but few mammographic density-associated genetic variants have been identified. Using data for 10,727 women from two international consortia, we estimated associations between 77 common breast cancer susceptibility variants and absolute dense area, percent dense area and absolute nondense area adjusted for study, age, and BMI using mixed linear modeling. We found strong support for established associations between rs10995190 (in the region of ZNF365), rs2046210 (ESR1), and rs3817198 (LSP1) and adjusted absolute and percent dense areas (all P < 10(-5)). Of 41 recently discovered breast cancer susceptibility variants, associations were found between rs1432679 (EBF1), rs17817449 (MIR1972-2: FTO), rs12710696 (2p24.1), and rs3757318 (ESR1) and adjusted absolute and percent dense areas, respectively. There were associations between rs6001930 (MKL1) and both adjusted absolute dense and nondense areas, and between rs17356907 (NTN4) and adjusted absolute nondense area. Trends in all but two associations were consistent with those for breast cancer risk. Results suggested that 18% of breast cancer susceptibility variants were associated with at least one mammographic density measure. Genetic variants at multiple loci were associated with both breast cancer risk and the mammographic density measures. Further understanding of the underlying mechanisms at these loci could help identify etiologic pathways implicated in how mammographic density predicts breast cancer risk.ABCFS: The Australian Breast Cancer Family Registry (ABCFR; 1992-1995) was supported by the Australian NHMRC, the New South Wales Cancer Council, and the Victorian Health Promotion Foundation (Australia), and by grant UM1CA164920 from the USA National Cancer Institute. The Genetic Epidemiology Laboratory at the University of Melbourne has also received generous support from Mr B. Hovey and Dr and Mrs R.W. Brown to whom we are most grateful. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Breast Cancer Susceptibility Variants and Mammographic Density 5 Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR. BBCC: This study was funded in part by the ELAN-Program of the University Hospital Erlangen; Katharina Heusinger was funded by the ELAN program of the University Hospital Erlangen. BBCC was supported in part by the ELAN program of the Medical Faculty, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg. EPIC-Norfolk: This study was funded by research programme grant funding from Cancer Research UK and the Medical Research Council with additional support from the Stroke Association, British Heart Foundation, Department of Health, Research into Ageing and Academy of Medical Sciences. MCBCS: This study was supported by Public Health Service Grants P50 CA 116201, R01 CA 128931, R01 CA 128931-S01, R01 CA 122340, CCSG P30 CA15083, from the National Cancer Institute, National Institutes of Health, and Department of Health and Human Services. MCCS: Melissa C. Southey is a National Health and Medical Research Council Senior Research Fellow and a Victorian Breast Cancer Research Consortium Group Leader. The study was supported by the Cancer Council of Victoria and by the Victorian Breast Cancer Research Consortium. MEC: National Cancer Institute: R37CA054281, R01CA063464, R01CA085265, R25CA090956, R01CA132839. MMHS: This work was supported by grants from the National Cancer Institute, National Institutes of Health, and Department of Health and Human Services. (R01 CA128931, R01 CA 128931-S01, R01 CA97396, P50 CA116201, and Cancer Center Support Grant P30 CA15083). Breast Cancer Susceptibility Variants and Mammographic Density 6 NBCS: This study has been supported with grants from Norwegian Research Council (#183621/S10 and #175240/S10), The Norwegian Cancer Society (PK80108002, PK60287003), and The Radium Hospital Foundation as well as S-02036 from South Eastern Norway Regional Health Authority. NHS: This study was supported by Public Health Service Grants CA131332, CA087969, CA089393, CA049449, CA98233, CA128931, CA 116201, CA 122340 from the National Cancer Institute, National Institutes of Health, Department of Health and Human Services. OOA study was supported by CA122822 and X01 HG005954 from the NIH; Breast Cancer Research Fund; Elizabeth C. Crosby Research Award, Gladys E. Davis Endowed Fund, and the Office of the Vice President for Research at the University of Michigan. Genotyping services for the OOA study were provided by the Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096. OFBCR: This work was supported by grant UM1 CA164920 from the USA National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR. SASBAC: The SASBAC study was supported by Märit and Hans Rausing’s Initiative against Breast Cancer, National Institutes of Health, Susan Komen Foundation and Agency for Science, Technology and Research of Singapore (A*STAR). Breast Cancer Susceptibility Variants and Mammographic Density 7 SIBS: SIBS was supported by program grant C1287/A10118 and project grants from Cancer Research UK (grant numbers C1287/8459). COGS grant: Collaborative Oncological Gene-environment Study (COGS) that enabled the genotyping for this study. Funding for the BCAC component is provided by grants from the EU FP7 programme (COGS) and from Cancer Research UK. Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692), the National Institutes of Health (CA128978) and Post- Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAMEON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.This is the author accepted manuscript. The final version is available via American Association for Cancer Research at http://cancerres.aacrjournals.org/content/early/2015/04/10/0008-5472.CAN-14-2012.abstract

    Revealing the short-range structure of the "mirror nuclei" 3^3H and 3^3He

    Full text link
    When protons and neutrons (nucleons) are bound into atomic nuclei, they are close enough together to feel significant attraction, or repulsion, from the strong, short-distance part of the nucleon-nucleon interaction. These strong interactions lead to hard collisions between nucleons, generating pairs of highly-energetic nucleons referred to as short-range correlations (SRCs). SRCs are an important but relatively poorly understood part of nuclear structure and mapping out the strength and isospin structure (neutron-proton vs proton-proton pairs) of these virtual excitations is thus critical input for modeling a range of nuclear, particle, and astrophysics measurements. Hitherto measurements used two-nucleon knockout or ``triple-coincidence'' reactions to measure the relative contribution of np- and pp-SRCs by knocking out a proton from the SRC and detecting its partner nucleon (proton or neutron). These measurementsshow that SRCs are almost exclusively np pairs, but had limited statistics and required large model-dependent final-state interaction (FSI) corrections. We report on the first measurement using inclusive scattering from the mirror nuclei 3^3H and 3^3He to extract the np/pp ratio of SRCs in the A=3 system. We obtain a measure of the np/pp SRC ratio that is an order of magnitude more precise than previous experiments, and find a dramatic deviation from the near-total np dominance observed in heavy nuclei. This result implies an unexpected structure in the high-momentum wavefunction for 3^3He and 3^3H. Understanding these results will improve our understanding of the short-range part of the N-N interaction

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352

    Novel measurement of the neutron magnetic form factor from A=3 mirror nuclei

    Get PDF
    The electromagnetic form factors of the proton and neutron encode information on the spatial structure of their charge and magnetization distributions. While measurements of the proton are relatively straightforward, the lack of a free neutron target makes measurements of the neutron's electromagnetic structure more challenging and more sensitive to experimental or model-dependent uncertainties. Various experiments have attempted to extract the neutron form factors from scattering from the neutron in deuterium, with different techniques providing different, and sometimes large, systematic uncertainties. We present results from a novel measurement of the neutron magnetic form factor using quasielastic scattering from the mirror nuclei ^{3}H and ^{3}He, where the nuclear effects are larger than for deuterium but expected to largely cancel in the cross-section ratios. We extracted values of the neutron magnetic form factor for low-to-modest momentum transfer, 0.6&lt;Q^{2}&lt;2.9  GeV^{2}, where existing measurements give inconsistent results. The precision and Q^{2} range of these data allow for a better understanding of the current world's data and suggest a path toward further improvement of our overall understanding of the neutron's magnetic form factor
    corecore