2,445 research outputs found

    Synthesis and structure - Activity relationship study of potent cytotoxic analogues of the marine alkaloid Lamellarin D

    Get PDF
    The marine alkaloid, Lamellarin D (Lam-D), has shown potent cytotoxicity in numerous cancer cell lines, and was recently identified as a potent topoisomerase I inhibitor. A library of open lactone analogs of Lam-D was prepared from a methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3- carboxylate scaffold (1) by introducing various aryl groups through sequential and regioselective bromination, followed by Pd(0)-catalyzed Suzuki cross-coupling chemistry. The compounds were obtained in a 24-44% overall yield, and tested in a panel of three human tumor cell lines, MDA-MB- 231 (breast), A-549 (lung), and HT-29 (colon), to evaluate their cytotoxic potential. From these data the SAR study concluded that more than 75% of the open-chain Lam-D analogs tested showed cytotoxicity in a low micromolar GI50 range

    Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour

    Get PDF
    Protein lysine posttranslational modification by an increasing number of different acyl groups is becoming appreciated as a regulatory mechanism in cellular biology. Sirtuins are class III histone deacylases that use NAD(+) as a co-substrate during amide bond hydrolysis. Several studies have described the sirtuins as sensors of the NAD(+)/NADH ratio, but it has not been formally tested for all the mammalian sirtuins in vitro. To address this problem, we first synthesized a wide variety of peptide-based probes, which were used to identify the range of hydrolytic activities of human sirtuins. These probes included aliphatic ϵ-N-acyllysine modifications with hydrocarbon lengths ranging from formyl (C(1)) to palmitoyl (C(16)) as well as negatively charged dicarboxyl-derived modifications. In addition to the well established activities of the sirtuins, “long chain” acyllysine modifications were also shown to be prone to hydrolytic cleavage by SIRT1–3 and SIRT6, supporting recent findings. We then tested the ability of NADH, ADP-ribose, and nicotinamide to inhibit these NAD(+)-dependent deacylase activities of the sirtuins. In the commonly used 7-amino-4-methylcoumarin-coupled fluorescence-based assay, the fluorophore has significant spectral overlap with NADH and therefore cannot be used to measure inhibition by NADH. Therefore, we turned to an HPLC-MS-based assay to directly monitor the conversion of acylated peptides to their deacylated forms. All tested sirtuin deacylase activities showed sensitivity to NADH in this assay. However, the inhibitory concentrations of NADH in these assays are far greater than the predicted concentrations of NADH in cells; therefore, our data indicate that NADH is unlikely to inhibit sirtuins in vivo. These data suggest a re-evaluation of the sirtuins as direct sensors of the NAD(+)/NADH ratio

    Amygdala subnuclei response and connectivity during emotional processing

    Get PDF
    The involvement of the human amygdala in emotion-related processing has been studied using functional magnetic resonance imaging (fMRI) for many years. However, despite the amygdala being comprised of several subnuclei, most studies investigated the role of the entire amygdala in processing of emotions. Here we combined a novel anatomical tracing protocol with event-related high-resolution fMRI acquisition to study the responsiveness of the amygdala subnuclei to negative emotional stimuli and to examine intra-amygdala functional connectivity. The greatest sensitivity to the negative emotional stimuli was observed in the centromedial amygdala, where the hemodynamic response amplitude elicited by the negative emotional stimuli was greater and peaked later than for neutral stimuli. Connectivity patterns converge with extant findings in animals, such that the centromedial amygdala was more connected with the nuclei of the basal amygdala than with the lateral amygdala. Current findings provide evidence of functional specialization within the human amygdala

    Synthesis and Antiangiogenic Activity of N-Alkylated Levamisole Derivatives

    Get PDF
    Inhibition of angiogenesis is a promising addition to current cancer treatment strategies. Neutralization of vascular endothelial growth factor by monoclonal antibodies is clinically effective but may cause side effects due to thrombosis. Low molecular weight angiogenesis inhibitors are currently less effective than antibody treatment and are also associated with serious side effects. The discovery of new chemotypes with efficient antiangiogenic activity is therefore of pertinent interest. (S)-levamisole hydrochloride, an anthelminthic drug approved for human use and with a known clinical profile, was recently shown to be an inhibitor of angiogenesis in vitro and exhibited tumor growth inhibition in mice. Here we describe the synthesis and in vitro evaluation of a series of N-alkylated analogues of levamisole with the aim of characterizing structure-activity relationships with regard to inhibition of angiogenesis. N-methyllevamisole and p-bromolevamisole proved more effective than the parent compound, (S)-levamisole hydrochloride, with respect to inhibition of angiogenesis and induction of undifferentiated cluster morphology in human umbilical vein endothelial cells grown in co-culture with normal human dermal fibroblasts. Interestingly, the cluster morphology caused by N-methyllevamisole was different than the clusters observed for levamisole, and a third "cord-like" morphology resembling that of the known drug suramin was observed for an aniline-containing derivative. New chemotypes exhibiting antiangiogenic effects in vitro are thus described, and further investigation of their underlying mechanism of action is warranted

    Silac mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function

    Get PDF
    Stable isotope labeling by amino acids in cell culture (SILAC) has become a versatile tool for quantitative, mass spectrometry (MS)-based proteomics. Here, we completely label mice with a diet containing either the natural or the 13C6-substituted version of lysine. Mice were labeled over four generations with the heavy diet, and development, growth, and behavior were not affected. MS analysis of incorporation levels allowed for the determination of incorporation rates of proteins from blood cells and organs. The F2 generation was completely labeled in all organs tested. SILAC analysis from various organs lacking expression of β1 integrin, β-Parvin, or the integrin tail-binding protein Kindlin-3 confirmed their absence and disclosed a structural defect of the red blood cell membrane skeleton in Kindlin-3-deficient erythrocytes. The SILAC-mouse approach is a versatile tool by which to quantitatively compare proteomes from knockout mice and thereby determine protein functions under complex in vivo conditions
    • …
    corecore