132 research outputs found

    Evaluation of an indirect method for leaf area index determination in the vineyard: Combined effects of cultivar, year and training system

    Get PDF
    The performance of the plant canopy analyzer LAI-2000 was evaluated in three seasons to estimate vineyard LAI (leafarea index) in the Bordeaux area. Measurements were made in a vertical-trellised vineyard with 5555 Semillon and Sauvignon blanc vines per ha, and with 2525 lyre-trained Cabernet franc vines per ha. Various LAI-2000 sampling protocols were tested and the data compared with destructive determinations. While the results from single vines a ere not satisfactory, very good relationships were obtained if five consecutive vines were used. In the vertical-trellised vineyard, a very accurate and direct estimate of LAI could be obtained with the LAI-2000 using a combination of "parallel" and "diagonal" sampling protocol. LAI values obtained by direct and LAI-2000 had a 1:1 correspondence and were identical for both, year and cultivar. For the lyre system, a local calibration was required, mainly because of the contribution of shoots, perennial vine parts and posts. This calibration was easily obtained by progressively removing leaves from the vines

    Arid lands in a changing world

    Get PDF

    Parentage of grapevine rootstock ‘Fercal’ finally elucidated

    Get PDF
    Using a set of 20 microsatellite markers, ‘B.C. n°1B’ (mother) and ‘31 Richter’ (father) were demonstrated to be the true parents of ‘Fercal’ rootstock. ‘333 Ecole de Montpellier’ was definitively excluded as the putative father. ‘B.C. n°1A’ and ‘B.C. n°1B’ were shown to be distinct genotypes. ‘Ugni blanc’, and not ‘Colombard’, was discovered to be the Vitis vinifera father of ‘B.C. n°1B’.

    Ethanol application at veraison decreases acidity in Cabernet Sauvignon grapes

    Get PDF
    Research NoteSpraying ethanol (5 % v/v in water) onto grape clusters at mid-veraison led to a 30 % drop in the malic acid concentration at harvest. As a consequence, titratable acidity also dropped by 10 %. The concentration of tartaric acid did not change significantly. The mode of action of ethanol on malic acid metabolism is discussed.

    Developmental control of hypoxia during bud burst in grapevine

    Get PDF
    Dormant or quiescent buds of woody perennials are often dense, and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed the increase in tissue oxygen status is rapid and developmentally regulated. Here we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes, and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the three VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT- and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds

    Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality

    Get PDF
    Background In viticulture, rootstock genotype plays a critical role to improve scion physiology, berry quality and to adapt grapevine (Vitis viniferaL.) to different environmental conditions. This study aimed at investigating the effect of two different rootstocks (1103 Paulsen - P - and Mgt 101-14 - M) in comparison with not grafted plants - NGC - on transcriptome (RNA-seq and small RNA-seq) and chemical composition of berry skin inPinot noir, and exploring the influence of rootstock-scion interaction on grape quality. Berry samples, collected at veraison and maturity, were investigated at transcriptional and biochemical levels to depict the impact of rootstock on berry maturation. Results RNA- and miRNA-seq analyses highlighted that, at veraison, the transcriptomes of the berry skin are extremely similar, while variations associated with the different rootstocks become evident at maturity, suggesting a greater diversification at transcriptional level towards the end of the ripening process. In the experimental design, resembling standard agronomic growth conditions, the vines grafted on the two different rootstocks do not show a high degree of diversity. In general, the few genes differentially expressed at veraison were linked to photosynthesis, putatively because of a ripening delay in not grafted vines, while at maturity the differentially expressed genes were mainly involved in the synthesis and transport of phenylpropanoids (e.g. flavonoids), cell wall loosening, and stress response. These results were supported by some differences in berry phenolic composition detected between grafted and not grafted plants, in particular in resveratrol derivatives accumulation. Conclusions Transcriptomic and biochemical data demonstrate a stronger impact of 1103 Paulsen rootstock than Mgt 101-14 or not grafted plants on ripening processes related to the secondary metabolite accumulations in berry skin tissue. Interestingly, theMYB14gene, involved in the feedback regulation of resveratrol biosynthesis was up-regulated in 1103 Paulsen thus supporting a putative greater accumulation of stilbenes in mature berries

    Metabolic effects of elevated temperature on organic acid degradation in ripening <em>Vitis vinifera</em> fruit

    Get PDF
    First published online: September 1, 2014Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2-4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4-6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4-10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4-6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit.C. Sweetman, V. O. Sadras, R. D. Hancock, K. L. Soole and C. M. For
    • …
    corecore